Amirali Popat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/191857/publications.pdf Version: 2024-02-01

Δμισλιι Ροσλτ

#	Article	IF	CITATIONS
1	Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 2011, 3, 2801.	2.8	501
2	A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. Journal of Materials Chemistry, 2012, 22, 11173.	6.7	277
3	Resveratrol nanoformulations: Challenges and opportunities. International Journal of Pharmaceutics, 2015, 479, 282-290.	2.6	240
4	Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale, 2013, 5, 5167.	2.8	206
5	Enzymeâ€Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angewandte Chemie - International Edition, 2012, 51, 12486-12489.	7.2	151
6	Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale, 2012, 4, 970-975.	2.8	147
7	Clinical translation of silica nanoparticles. Nature Reviews Materials, 2021, 6, 1072-1074.	23.3	137
8	Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate. Journal of Colloid and Interface Science, 2017, 488, 303-308.	5.0	132
9	Frontiers in the treatment of glioblastoma: Past, present and emerging. Advanced Drug Delivery Reviews, 2021, 171, 108-138.	6.6	125
10	Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids and Surfaces B: Biointerfaces, 2016, 144, 1-7.	2.5	114
11	Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. Journal of Colloid and Interface Science, 2016, 462, 368-374.	5.0	99
12	Encapsulation and Controlled Release of Resveratrol Within Functionalized Mesoporous Silica Nanoparticles for Prostate Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2019, 7, 225.	2.0	98
13	The solid progress of nanomedicine. Drug Delivery and Translational Research, 2020, 10, 726-729.	3.0	91
14	Mesoporous silica nanoparticles enhance the cytotoxicity of curcumin. RSC Advances, 2014, 4, 709-712.	1.7	90
15	Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2014, 117, 520-527.	2.5	86
16	pHâ€Responsive Nutraceutical–Mesoporous Silica Nanoconjugates with Enhanced Colloidal Stability. Angewandte Chemie - International Edition, 2013, 52, 2318-2322.	7.2	84
17	Effect of Surface Functionality of Silica Nanoparticles on Cellular Uptake and Cytotoxicity. Molecular Pharmaceutics, 2014, 11, 3642-3655.	2.3	84
18	<i>In Vitro</i> Dissolution, Cellular Membrane Permeability, and Anti-Inflammatory Response of Resveratrol-Encapsulated Mesoporous Silica Nanoparticles. Molecular Pharmaceutics, 2017, 14, 4431-4441.	2.3	82

AMIRALI POPAT

#	Article	IF	CITATIONS
19	Bifunctional Succinylated ε-Polylysine-Coated Mesoporous Silica Nanoparticles for pH-Responsive and Intracellular Drug Delivery Targeting the Colon. ACS Applied Materials & Interfaces, 2017, 9, 9470-9483.	4.0	77
20	Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. Journal of Controlled Release, 2020, 326, 544-555.	4.8	75
21	Programmable drug release using bioresponsive mesoporous silica nanoparticles for site-specific oral drug delivery. Chemical Communications, 2014, 50, 5547-5550.	2.2	71
22	Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2014, 434, 218-225.	5.0	62
23	Rod-like mesoporous silica nanoparticles with rough surfaces for enhanced cellular delivery. Journal of Materials Chemistry B, 2014, 2, 253-256.	2.9	61
24	Treatment of atherosclerotic plaque: perspectives on theranostics. Journal of Pharmacy and Pharmacology, 2019, 71, 1029-1043.	1.2	56
25	Efficient photoacoustic imaging using indocyanine green (ICG) loaded functionalized mesoporous silica nanoparticles. Biomaterials Science, 2019, 7, 5002-5015.	2.6	56
26	ε-Poly-l-Lysine/plasmid DNA nanoplexes for efficient gene delivery in vivo. International Journal of Pharmaceutics, 2018, 542, 142-152.	2.6	55
27	Environmental Copper Sensor Based on Polyethylenimine-Functionalized Nanoporous Anodic Alumina Interferometers. Analytical Chemistry, 2019, 91, 5011-5020.	3.2	51
28	Polymer–Mesoporous Silica Nanoparticle Core–Shell Nanofibers as a Dual-Drug-Delivery System for Guided Tissue Regeneration. ACS Applied Nano Materials, 2020, 3, 1457-1467.	2.4	49
29	Extracellular Vesicle Nanoarchitectonics for Novel Drug Delivery Applications. Small, 2021, 17, e2102220.	5.2	48
30	Cancer therapeutics with epigallocatechin-3-gallate encapsulated in biopolymeric nanoparticles. International Journal of Pharmaceutics, 2017, 518, 220-227.	2.6	46
31	Enhanced Solubility, Permeability and Anticancer Activity of Vorinostat Using Tailored Mesoporous Silica Nanoparticles. Pharmaceutics, 2018, 10, 283.	2.0	44
32	Rationally Designed Dendritic Silica Nanoparticles for Oral Delivery of Exenatide. Pharmaceutics, 2019, 11, 418.	2.0	42
33	GAC mimetic functionalised solid and mesoporous silica nanoparticles as viral entry inhibitors of herpes simplex type 1 and type 2 viruses. Nanoscale, 2016, 8, 16192-16196.	2.8	40
34	Oral Delivery of β-Lactoglobulin-Nanosphere-Encapsulated Resveratrol Alleviates Inflammation in Winnie Mice with Spontaneous Ulcerative Colitis. Molecular Pharmaceutics, 2021, 18, 627-640.	2.3	39
35	Floating tablets from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2014, 2, 8298-8302.	2.9	37
36	Silica vesicles as nanocarriers and adjuvants for generating both antibody and T-cell mediated immune resposes to Bovine Viral Diarrhoea Virus E2 protein. Biomaterials, 2014, 35, 9972-9983.	5.7	37

Amirali Popat

#	Article	IF	CITATIONS
37	Recent advances in the rational design of silica-based nanoparticles for gene therapy. Therapeutic Delivery, 2012, 3, 1217-1237.	1.2	36
38	Nanocarriers for oral delivery of biologics: small carriers for big payloads. Trends in Pharmacological Sciences, 2021, 42, 957-972.	4.0	35
39	pH – Responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery. Journal of Colloid and Interface Science, 2021, 589, 45-55.	5.0	31
40	MUC13 promotes the development of colitis-associated colorectal tumors via β-catenin activity. Oncogene, 2019, 38, 7294-7310.	2.6	28
41	Facile synthesis of lactoferrin conjugated ultra small large pore silica nanoparticles for the treatment of glioblastoma. Nanoscale, 2021, 13, 16909-16922.	2.8	28
42	Nanomaterials: The New Antimicrobial Magic Bullet. ACS Infectious Diseases, 2022, 8, 693-712.	1.8	28
43	Rapid fabrication of homogeneously distributed hyper-branched gold nanostructured electrode based electrochemical immunosensor for detection of protein biomarkers. Sensors and Actuators B: Chemical, 2021, 326, 128803.	4.0	27
44	Oneâ€Pot Synthesis of pHâ€Responsive Eudragitâ€Mesoporous Silica Nanocomposites Enable Colonic Delivery of Glucocorticoids for the Treatment of Inflammatory Bowel Disease. Advanced Therapeutics, 2021, 4, 2000165.	1.6	26
45	Gastro-protective protein-silica nanoparticles formulation for oral drug delivery: In vitro release, cytotoxicity and mitochondrial activity. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 171-180.	2.0	24
46	Engineering mesoporous silica nanoparticles towards oral delivery of vancomycin. Journal of Materials Chemistry B, 2021, 9, 7145-7166.	2.9	23
47	Microfluidic assembly of pomegranate-like hierarchical microspheres for efflux regulation in oral drug delivery. Acta Biomaterialia, 2021, 126, 277-290.	4.1	23
48	Mesoporous Silica Nanoparticles Improve Oral Delivery of Antitubercular Bicyclic Nitroimidazoles. ACS Biomaterials Science and Engineering, 2022, 8, 4196-4206.	2.6	23
49	Oral meropenem for superbugs: challenges and opportunities. Drug Discovery Today, 2021, 26, 551-560.	3.2	22
50	Liquid CO ₂ Formulated Mesoporous Silica Nanoparticles for pH-Responsive Oral Delivery of Meropenem. ACS Biomaterials Science and Engineering, 2021, 7, 1836-1853.	2.6	22
51	Emerging Nanomedicines for the Treatment of Atopic Dermatitis. AAPS PharmSciTech, 2021, 22, 55.	1.5	22
52	Formulation technologies and advances for oral delivery of novel nitroimidazoles and antimicrobial peptides. Journal of Controlled Release, 2020, 324, 728-749.	4.8	22
53	Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina. PLoS ONE, 2017, 12, e0178305.	1.1	22
54	Succinylated β-Lactoglobuline-Functionalized Multiwalled Carbon Nanotubes with Improved Colloidal Stability and Biocompatibility. ACS Biomaterials Science and Engineering, 2019, 5, 3361-3372.	2.6	17

Amirali Popat

#	Article	IF	CITATIONS
55	PLGA encapsulated Î ³ -cyclodextrin-meropenem inclusion complex formulation for oral delivery. International Journal of Pharmaceutics, 2021, 597, 120280.	2.6	17
56	Tacrolimus encapsulated mesoporous silica nanoparticles embedded hydrogel for the treatment of atopic dermatitis. International Journal of Pharmaceutics, 2021, 608, 121079.	2.6	17
57	Nanodispersed UV blockers in skin-friendly silica vesicles with superior UV-attenuating efficiency. Journal of Materials Chemistry B, 2014, 2, 7673-7678.	2.9	15
58	A well-tolerated and rapidly acting thiopurine for IBD?. Drug Discovery Today, 2019, 24, 37-41.	3.2	14
59	Supercritical carbon dioxide assisted complexation of benznidazole: γ-cyclodextrin for improved dissolution. International Journal of Pharmaceutics, 2021, 596, 120240.	2.6	13
60	Ultra-bright green carbon dots with excitation-independent fluorescence for bioimaging. Journal of Nanostructure in Chemistry, 2023, 13, 377-387.	5.3	13
61	Understanding the relationship between solubility and permeability of Î ³ -cyclodextrin-based systems embedded with poorly aqueous soluble benznidazole. International Journal of Pharmaceutics, 2022, 616, 121487.	2.6	11
62	Protein Nanoparticles for Enhanced Oral Delivery of Coenzyme-Q10: <i>in Vitro</i> and <i>in Silico</i> Studies. ACS Biomaterials Science and Engineering, 2023, 9, 2846-2856.	2.6	9
63	Enhanced Mucosal Transport of Polysaccharide–Calcium Phosphate Nanocomposites for Oral Vaccination. ACS Applied Bio Materials, 2021, 4, 7865-7878.	2.3	9
64	Over the counter low-dose cannabidiol: A viewpoint from the ACRE Capacity Building Group. Journal of Psychopharmacology, 2022, 36, 661-665.	2.0	8
65	Formulation and Biological Evaluation of Mesoporous Silica Nanoparticles Loaded with Combinations of Sortase A Inhibitors and Antimicrobial Peptides. Pharmaceutics, 2022, 14, 986.	2.0	8
66	Nanobiomaterials to modulate natural killer cell responses for effective cancer immunotherapy. Trends in Biotechnology, 2023, 41, 77-92.	4.9	7
67	An Overview of Recent Patents on Nanosuspension. Recent Patents on Drug Delivery and Formulation, 2014, 8, 144-154.	2.1	5
68	Size, shape and surface charge considerations of orally delivered nanomedicines. , 2020, , 143-176.		4
69	Facile synthesis of dendrimer like mesoporous silica nanoparticles to enhance targeted delivery of interleukin-22. Biomaterials Science, 2021, 9, 7402-7411.	2.6	4
70	3D printing: potential clinical applications for personalised solid dose medications. Medical Journal of Australia, 2022, 216, 64-67.	0.8	4
71	Sprayâ€nâ€&ense: Sprayable Nanofibers for Onâ€&ite Chemical Sensing. Advanced Functional Materials, 0, , 2103496.	7.8	4
72	Sustained release ketamine-loaded porous silicon-PLGA microparticles prepared by an optimized supercritical CO2 process. Drug Delivery and Translational Research, 2021, , 1.	3.0	3

#	Article	IF	CITATIONS
73	Synthesis of Silica Vesicles with Small Sizes and Reduced Aggregation for Photodynamic Therapy. Chemistry Letters, 2014, 43, 316-318.	0.7	2
74	Luminescent Porous Silicon Nanoparticles for Continuous Wave and Time-Gated Photoluminescence Imaging. Methods in Molecular Biology, 2019, 2054, 185-198.	0.4	0