## Andrey Belyakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1918406/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science, 2014, 60, 130-207.                                                                                                                  | 16.0 | 1,915     |
| 2  | Grain refinement in copper under large strain deformation. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 2629-2643.                                                                                     | 0.7  | 246       |
| 3  | Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation.<br>Acta Materialia, 2003, 51, 847-861.                                                                                                                           | 3.8  | 211       |
| 4  | Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998,<br>255, 139-147.                                                 | 2.6  | 205       |
| 5  | Continuous recrystallization in austenitic stainless steel after large strain deformation. Acta<br>Materialia, 2002, 50, 1547-1557.                                                                                                                                      | 3.8  | 178       |
| 6  | Dynamic recrystallization mechanisms operating in a Ni–20%Cr alloy under hot-to-warm working.<br>Acta Materialia, 2010, 58, 3624-3632.                                                                                                                                   | 3.8  | 160       |
| 7  | Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical<br>properties of an austenitic stainless steel. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2012, 545, 176-186. | 2.6  | 157       |
| 8  | Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr<br>alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2015, 629, 29-40.                                      | 2.6  | 146       |
| 9  | Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773–1273 K. Acta Materialia, 2015, 82, 244-254.                                                                                                                     | 3.8  | 139       |
| 10 | Strain-induced grain evolution in polycrystalline copper during warm deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2957-2965.                                                                            | 1.1  | 123       |
| 11 | Ultrafine Grain Formation in Ferritic Stainless Steel during Severe Plastic Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 2206-2214.                                                                     | 1.1  | 113       |
| 12 | Microstructure evolution and strengthening mechanisms of Fe–23Mn–0.3C–1.5Al TWIP steel during cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 617, 52-60.                                        | 2.6  | 112       |
| 13 | Structural changes of tempered martensitic 9%Cr–2%W–3%Co steel during creep at 650°C. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012,<br>534, 632-639.                                                      | 2.6  | 106       |
| 14 | Microstructure evolution in dual-phase stainless steel during severe deformation. Acta Materialia, 2006, 54, 2521-2532.                                                                                                                                                  | 3.8  | 105       |
| 15 | Wear resistance and electroconductivity in copper processed by severe plastic deformation. Wear, 2013, 305, 89-99.                                                                                                                                                       | 1.5  | 100       |
| 16 | Hall-Petch relationship for austenitic stainless steels processed by large strain warm rolling. Acta<br>Materialia, 2017, 136, 39-48.                                                                                                                                    | 3.8  | 92        |
| 17 | Ultrafine grain development in copper during multidirectional forging at 195 K. Philosophical<br>Magazine Letters, 2007, 87, 751-766.                                                                                                                                    | 0.5  | 89        |
| 18 | Grain Refinement under Multiple Warm Deformation in 304 Type Austenitic Stainless Steel ISIJ<br>International, 1999, 39, 592-599.                                                                                                                                        | 0.6  | 87        |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fine-Grained Structure Formation in Austenitic Stainless Steel under Multiple Deformation at<br>0.5 <i>T</i> <sub>m</sub> . Materials Transactions, JIM, 2000, 41, 476-484.                                                                            | 0.9 | 86        |
| 20 | Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9Âpct Cr Heat Resistant Steel<br>During Creep. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,<br>2013, 44, 162-172.                    | 1.1 | 86        |
| 21 | Laves-phase precipitates in a low-carbon 9% Cr martensitic steel during aging and creep at 923 K.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2014, 615, 153-163.                        | 2.6 | 86        |
| 22 | Grain refinement kinetics and strengthening mechanisms in Cu–0.3Cr–0.5Zr alloy subjected to intense<br>plastic deformation. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2016, 654, 131-142. | 2.6 | 81        |
| 23 | Dynamic recrystallization of copper polycrystals with different purities. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 265, 233-239.                                                   | 2.6 | 80        |
| 24 | Substructures and internal stresses developed under warm severe deformation of austenitic stainless steel. Scripta Materialia, 2000, 42, 319-325.                                                                                                      | 2.6 | 76        |
| 25 | Laves phase evolution in a modified P911 heat resistant steel during creep at 923 K. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 71-77.                                          | 2.6 | 76        |
| 26 | Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel. Materials<br>Characterization, 2016, 112, 180-187.                                                                                                                | 1.9 | 71        |
| 27 | Strain-induced grain evolution in an austenitic stainless steel under warm multiple forging. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013,<br>564, 413-422.                             | 2.6 | 65        |
| 28 | Development of Nanocrystalline 304L Stainless Steel by Large Strain Cold Working. Metals, 2015, 5, 656-668.                                                                                                                                            | 1.0 | 65        |
| 29 | Dynamic recrystallization in ultra fine-grained 304 stainless steel. Scripta Materialia, 2000, 43, 21-26.                                                                                                                                              | 2.6 | 64        |
| 30 | Structural strengthening of an austenitic stainless steel subjected to warm-to-hot working.<br>Materials Characterization, 2011, 62, 432-437.                                                                                                          | 1.9 | 63        |
| 31 | Grain refinement in a Cu–Cr–Zr alloy during multidirectional forging. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 380-389.                                                       | 2.6 | 62        |
| 32 | Tempering behavior of a low nitrogen boron-added 9%Cr steel. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2016, 662, 443-455.                                                                | 2.6 | 62        |
| 33 | Annealing behavior of a 304L stainless steel processed by large strain cold and warm rolling.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2017, 689, 370-383.                            | 2.6 | 62        |
| 34 | Effect of chromium and zirconium content on structure, strength and electrical conductivity of<br>Cu-Cr-Zr alloys after high pressure torsion. Materials Letters, 2017, 199, 46-49.                                                                    | 1.3 | 62        |
| 35 | Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1280-1286.                  | 2.6 | 60        |
| 36 | Deformation microstructures and tensile properties of an austenitic stainless steel subjected to multiple warm rolling. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 279-285.   | 2.6 | 52        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Microstructure and Properties of Fine Grained Cu-Cr-Zr Alloys after Termo-Mechanical Treatments.<br>Reviews on Advanced Materials Science, 2018, 54, 56-92.                                                                             | 1.4 | 52        |
| 38 | New grain formation during warm deformation of ferritic stainless steel. Metallurgical and<br>Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 161-167.                                                   | 1.1 | 51        |
| 39 | Strain-induced submicrocrystalline grains developed in austenitic stainless steel under severe warm deformation. Philosophical Magazine Letters, 2000, 80, 711-718.                                                                     | 0.5 | 50        |
| 40 | Recovery and recrystallization in ferritic stainless steel after large strain deformation. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005,<br>403, 249-259.                | 2.6 | 50        |
| 41 | Strengthening of age-hardenable WE43 magnesium alloy processed by high pressure torsion. Materials<br>Letters, 2016, 170, 5-9.                                                                                                          | 1.3 | 49        |
| 42 | Microstructure Evolution in Ferritic Stainless Steels during Large Strain Deformation. Materials<br>Transactions, 2004, 45, 2812-2821.                                                                                                  | 0.4 | 46        |
| 43 | Effect of Severe Cold or Warm Deformation on Microstructure Evolution and Tensile Behavior of a 316L Stainless Steel. Advanced Engineering Materials, 2015, 17, 1812-1820.                                                              | 1.6 | 46        |
| 44 | Structural/textural changes and strengthening of an advanced high-Mn steel subjected to cold<br>rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2016, 651, 763-773.     | 2.6 | 46        |
| 45 | Microstructure and Mechanical Properties of Austenitic Stainless Steels after Dynamic and<br>Postâ€Ðynamic Recrystallization Treatment. Advanced Engineering Materials, 2018, 20, 1700960.                                              | 1.6 | 46        |
| 46 | The crystallography of M <sub>23</sub> C <sub>6</sub> carbides in a martensitic 9% Cr steel after tempering, aging and creep. Philosophical Magazine, 2013, 93, 2259-2268.                                                              | 0.7 | 44        |
| 47 | Tempering-induced structural changes in steel 10Kh9K3V1M1FBR and their effect on the mechanical properties. Metal Science and Heat Treatment, 2010, 52, 100-110.                                                                        | 0.2 | 41        |
| 48 | Changes in misorientations of grain boundaries in titanium during deformation. Materials Characterization, 2010, 61, 732-739.                                                                                                           | 1.9 | 41        |
| 49 | On the effect of chemical composition on yield strength of TWIP steels. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 687, 82-84.                                        | 2.6 | 41        |
| 50 | Effect of Co on Creep Behavior of a P911ÂSteel. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2013, 44, 577-583.                                                                            | 1.1 | 40        |
| 51 | Microstructure Evolution in an Advanced 9Âpct Cr Martensitic Steel during Creep at 923ÂK (650°C).<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44,<br>128-135.                       | 1.1 | 40        |
| 52 | Recrystallization and Related Phenomena. Dynamic Recrystallization under Warm Deformation of<br>Polycrystalline Copper ISIJ International, 1998, 38, 595-601.                                                                           | 0.6 | 39        |
| 53 | Evolution of Lath Substructure and Internal Stresses in a 9% Cr Steel during Creep. ISIJ International, 2017, 57, 540-549.                                                                                                              | 0.6 | 35        |
| 54 | Effect of dispersed particles on microstructure evolved in iron under mechanical milling followed by consolidating rolling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1769-1776. | 1.1 | 34        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Comparative study on microstructure evolution upon unidirectional and multidirectional cold<br>working in an Fe–15%Cr ferritic alloy. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2007, 456, 323-331. | 2.6 | 32        |
| 56 | Creep behavior and microstructural evolution of a 9%Cr steel with high B and low N contents.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2018, 725, 228-241.                                       | 2.6 | 32        |
| 57 | Grain boundary assembles developed in an austenitic stainless steel during large strain warm working. Materials Characterization, 2012, 70, 14-20.                                                                                                               | 1.9 | 31        |
| 58 | Grain refinement and strengthening of austenitic stainless steels during large strain cold rolling.<br>Philosophical Magazine, 2019, 99, 531-556.                                                                                                                | 0.7 | 31        |
| 59 | Microstructure and deformation behaviour of submicrocrystalline 304 stainless steel produced by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 867-871.          | 2.6 | 30        |
| 60 | Hydrogen induced delayed fracture of ultrafine grained 0.6% O steel with dispersed oxide particles.<br>Scripta Materialia, 2003, 49, 1111-1116.                                                                                                                  | 2.6 | 30        |
| 61 | On Strengthening of Austenitic Stainless Steel by Large Strain Cold Working. ISIJ International, 2016, 56, 1289-1296.                                                                                                                                            | 0.6 | 30        |
| 62 | Annealing behavior of a ferritic stainless steel subjected to large-strain cold working. Journal of<br>Materials Research, 2007, 22, 3042-3051.                                                                                                                  | 1.2 | 28        |
| 63 | Tensile behaviour of submicrocrystalline ferritic steel processed by large-strain deformation.<br>Philosophical Magazine Letters, 2009, 89, 201-212.                                                                                                             | 0.5 | 28        |
| 64 | Structure and Mechanical and Corrosion Properties of a Magnesium Mg–Y–Nd–Zr Alloy after High<br>Pressure Torsion. Russian Metallurgy (Metally), 2017, 2017, 912-921.                                                                                             | 0.1 | 27        |
| 65 | Σ3 CSL boundary distributions in an austenitic stainless steel subjected to multidirectional forging followed by annealing. Philosophical Magazine, 2014, 94, 4181-4196.                                                                                         | 0.7 | 26        |
| 66 | Development of Σ3 n CSL boundaries in austenitic stainless steels subjected to large strain deformation and annealing. Journal of Materials Science, 2017, 52, 4210-4223.                                                                                        | 1.7 | 25        |
| 67 | Structural changes in metastable austenitic steel during equal channel angular pressing and subsequent cyclic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 723, 141-147.               | 2.6 | 25        |
| 68 | Impact toughness of an S700MC-type steel: Tempforming vs ausforming. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 723, 259-268.                                                                  | 2.6 | 25        |
| 69 | Incomplete recrystallization in cold worked steel containing TiC. Materials Science & Engineering<br>A: Structural Materials: Properties, Microstructure and Processing, 2007, 471, 50-56.                                                                       | 2.6 | 24        |
| 70 | Regularities of Deformation Microstructures in Ferritic Stainless Steels during Large Strain Cold<br>Working. ISIJ International, 2008, 48, 1071-1079.                                                                                                           | 0.6 | 24        |
| 71 | Effect of rolling temperature on microstructure and mechanical properties of 18%Mn TWIP/TRIP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 110-117.                                     | 2.6 | 21        |
| 72 | Grain Refinement Kinetics in a Low Alloyed Cu–Cr–Zr Alloy Subjected to Large Strain Deformation.<br>Materials, 2017, 10, 1394.                                                                                                                                   | 1.3 | 21        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Experimental and numerical analyses of microstructure evolution of Cu-Cr-Zr alloys during severe plastic deformation. Materials Characterization, 2019, 156, 109849.                                                                          | 1.9 | 21        |
| 74 | Microstructural Changes and Strengthening of Austenitic Stainless Steels during Rolling at 473 K.<br>Metals, 2020, 10, 1614.                                                                                                                  | 1.0 | 21        |
| 75 | Static recrystallization of SiO2-particle containing {011}<100> copper single crystals. Acta Materialia, 2003, 51, 1507-1515.                                                                                                                 | 3.8 | 19        |
| 76 | Development of a high-strength high-conductivity Cu-Ni-P alloy. Part I: Characterization of precipitation products. Journal of Electronic Materials, 2006, 35, 1787-1792.                                                                     | 1.0 | 19        |
| 77 | Evolution of texture and development of â~3 n grain clusters in 316 austenitic stainless steel during thermal mechanical processing. Journal of Materials Science, 2013, 48, 997-1004.                                                        | 1.7 | 19        |
| 78 | Microstructure evolution in a 316L stainless steel subjected to multidirectional forging and unidirectional bar rolling. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012060.                                          | 0.3 | 19        |
| 79 | Effect of Tungsten on Creep Behavior of 9%Cr–3%Co Martensitic Steels. Metals, 2017, 7, 573.                                                                                                                                                   | 1.0 | 19        |
| 80 | Structural changes of ferritic stainless steel during severe plastic deformation. Scripta Materialia, 1995, 6, 893-896.                                                                                                                       | 0.5 | 18        |
| 81 | Creep strength breakdown and microstructure in a 9%Cr steel with high B and low N contents.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2020, 772, 138821.                      | 2.6 | 18        |
| 82 | Grain refinement in copper under large strain deformation. Philosophical Magazine A: Physics of<br>Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 2629-2643.                                                       | 0.7 | 17        |
| 83 | Development of a high-strength high-conductivity Cuâ <sup>~,</sup> Niâ <sup>~,</sup> P alloy. Part II: Processing by severe deformation. Journal of Electronic Materials, 2006, 35, 2000-2008.                                                | 1.0 | 17        |
| 84 | Influence of the carbon content on the phase composition and mechanical properties of P92-type steel. Physics of Metals and Metallography, 2015, 116, 1165-1174.                                                                              | 0.3 | 17        |
| 85 | Effect of annealing on wear resistance and electroconductivity of copper processed by high-pressure torsion. Journal of Materials Science, 2014, 49, 2270-2278.                                                                               | 1.7 | 16        |
| 86 | Three-stage relationship between flow stress and dynamic grain size in titanium in a wide temperature<br>interval. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2015, 628, 104-109. | 2.6 | 16        |
| 87 | Origin of Threshold Stresses in a P92-type Steel. Transactions of the Indian Institute of Metals, 2016, 69, 223-227.                                                                                                                          | 0.7 | 16        |
| 88 | Tempforming as an Advanced Processing Method for Carbon Steels. Metals, 2020, 10, 1566.                                                                                                                                                       | 1.0 | 16        |
| 89 | Controlling microstructure and mechanical properties of additively manufactured high-strength steels by tailored solidification. Additive Manufacturing, 2020, 35, 101389.                                                                    | 1.7 | 16        |
| 90 | Regularities of Grain Refinement in an Austenitic Stainless Steel during Multiple Warm Working.<br>Materials Science Forum, 2013, 753, 411-416.                                                                                               | 0.3 | 15        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | On the Strength of a 316L-Type Stainless Steel Subjected to Cold or Warm Rolling Followed by Annealing. Materials, 2020, 13, 2116.                                                                                                      | 1.3 | 15        |
| 92  | Sources of high creep resistance of modern high-chromium martensitic steels. Doklady Physical Chemistry, 2015, 464, 191-193.                                                                                                            | 0.2 | 14        |
| 93  | Advanced Thermomechanical Processing for a High-Mn Austenitic Steel. Metallurgical and Materials<br>Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5704-5708.                                                     | 1.1 | 14        |
| 94  | Submicrocrystalline Austenitic Stainless Steel Processed by Cold or Warm High Pressure Torsion.<br>Materials Science Forum, 0, 838-839, 398-403.                                                                                        | 0.3 | 14        |
| 95  | Dynamically Recrystallized Microstructures, Textures, and Tensile Properties of a Hot Worked<br>High-Mn Steel. Metals, 2019, 9, 30.                                                                                                     | 1.0 | 14        |
| 96  | On the Fracture Behavior of a Creep Resistant 10% Cr Steel with High Boron and Low Nitrogen<br>Contents at Low Temperatures. Materials, 2020, 13, 3.                                                                                    | 1.3 | 14        |
| 97  | Thermal stability of ultra fine-grained steel containing dispersed oxides. Scripta Materialia, 2001, 45,<br>1213-1219.                                                                                                                  | 2.6 | 13        |
| 98  | Nanocrystalline structures and tensile properties of stainless steels processed by severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012156.                                              | 0.3 | 13        |
| 99  | Microstructure and Mechanical Properties of 18%Mn TWIP/TRIP Steels Processed by Warm or Hot<br>Rolling. Steel Research International, 2017, 88, 1600123.                                                                                | 1.0 | 13        |
| 100 | The Role of Deformation in Coarsening of M23C6 Carbide Particles in 9% Cr Steel. Physics of Metals and Metallography, 2020, 121, 804-810.                                                                                               | 0.3 | 13        |
| 101 | Annealing behavior of submicrocrystalline oxide-bearing iron produced by mechanical alloying.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34,<br>131-138.                           | 1.1 | 12        |
| 102 | Changes in the grain structure of metallic materials upon plastic treatment. Physics of Metals and<br>Metallography, 2009, 108, 390-400.                                                                                                | 0.3 | 12        |
| 103 | Effect of Tempering on Mechanical Properties and Microstructure of a 9% Cr Heat Resistant Steel.<br>Materials Science Forum, 0, 706-709, 841-846.                                                                                       | 0.3 | 12        |
| 104 | Recrystallization behavior of a Ni–20%Cr alloy subjected to severe plastic deformation. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012,<br>543, 164-172.                   | 2.6 | 12        |
| 105 | Microstructure and Mechanical Properties of a High-Mn TWIP Steel Subjected to Cold Rolling and Annealing. Metals, 2017, 7, 571.                                                                                                         | 1.0 | 12        |
| 106 | On Kinetics of Grain Refinement and Strengthening by Dynamic Recrystallization. Advanced<br>Engineering Materials, 2019, 21, 1800104.                                                                                                   | 1.6 | 12        |
| 107 | Microstructure and Strengthening Mechanisms in an HSLA Steel Subjected to Tempforming. Metals, 2022, 12, 48.                                                                                                                            | 1.0 | 12        |
| 108 | Evolution of submicrocrystalline iron containing dispersed oxides under mechanical milling<br>followed by consolidation. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2002, 33, 3241-3248. | 1.1 | 11        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Effect of Nano-Sized Oxides on Annealing Behaviour of Ultrafine Grained Steels. Materials<br>Transactions, 2004, 45, 2252-2258.                                                                                                      | 0.4 | 11        |
| 110 | Effect of Warm to Hot Rolling on Microstructure, Texture and Mechanical Properties of an Advanced<br>Medium-Mn Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2019, 50, 4245-4256. | 1.1 | 11        |
| 111 | Thermal stability of gradient microstructure in a low-alloyed Cu-Cr-Zr alloy. Materials Letters, 2021, 304, 130531.                                                                                                                  | 1.3 | 11        |
| 112 | Effect of chromium content on precipitation in Cu–Cr–Zr alloys. Journal of Materials Science, 2022,<br>57, 13043-13059.                                                                                                              | 1.7 | 11        |
| 113 | High-Temperature Mechanism of Dynamic Recrystallization of Ferritic Steel. Materials Science Forum, 1993, 113-115, 385-390.                                                                                                          | 0.3 | 10        |
| 114 | Grain Boundary Assemblies in Dynamically-Recrystallized Austenitic Stainless Steel. Metals, 2016, 6, 268.                                                                                                                            | 1.0 | 10        |
| 115 | Mechanical behavior and brittle–ductile transition of high-chromium martensitic steel. Physics of<br>Metals and Metallography, 2016, 117, 390-398.                                                                                   | 0.3 | 10        |
| 116 | Evolution of grain boundary assemblies in Fe–0.6%O under mechanical milling followed by consolidating rolling. Scripta Materialia, 2003, 48, 1111-1116.                                                                              | 2.6 | 9         |
| 117 | Recrystallization Mechanisms in Severely Deformed Dual-Phase Stainless Steel. Materials Science<br>Forum, 0, 638-642, 1905-1910.                                                                                                     | 0.3 | 8         |
| 118 | Effect of cold rolling on the structure and mechanical properties of austenitic corrosion-resistant 10Kh18N8D3BR steel. Russian Metallurgy (Metally), 2012, 2012, 772-778.                                                           | 0.1 | 8         |
| 119 | Development of Ultrafine Grained Austenitic Stainless Steels by Large Strain Deformation and<br>Annealing. Materials Science Forum, 0, 783-786, 651-656.                                                                             | 0.3 | 8         |
| 120 | Recrystallization kinetics of an austenitic high-manganese steel subjected to severe plastic deformation. Russian Metallurgy (Metally), 2016, 2016, 812-819.                                                                         | 0.1 | 8         |
| 121 | Regularities of Microstructure Evolution and Strengthening Mechanisms of Austenitic Stainless<br>Steels Subjected to Large Strain Cold Working. Materials Science Forum, 0, 879, 224-229.                                            | 0.3 | 8         |
| 122 | Improving Mechanical Properties of 18%Mn TWIP Steels by Cold Rolling and Annealing. Metals, 2019, 9, 776.                                                                                                                            | 1.0 | 8         |
| 123 | Microstructures and Mechanical Properties of Steels and Alloys Subjected to Large-Strain<br>Cold-to-Warm Deformation. Metals, 2022, 12, 454.                                                                                         | 1.0 | 8         |
| 124 | Effect of SPD Processing Technique on Grain Refinement and Properties of an Austenitic Stainless<br>Steel. Materials Science Forum, 2016, 879, 1957-1962.                                                                            | 0.3 | 7         |
| 125 | Deformation Behavior of High-Mn TWIP Steels Processed by Warm-to-Hot Working. Metals, 2018, 8, 415.                                                                                                                                  | 1.0 | 7         |
| 126 | Tailoring microstructure and texture of annealed Al-Mn alloy through the variation of homogenization and prior cold deformation strain. Materials Characterization, 2020, 166, 110438.                                               | 1.9 | 7         |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Peculiarities of DRX in a Highly-Alloyed Austenitic Stainless Steel. Materials, 2021, 14, 4004.                                                                                  | 1.3 | 7         |
| 128 | Annealing softening mechanisms operating in cold worked oxide-bearing steels. Scripta Materialia, 2003, 48, 1463-1468.                                                           | 2.6 | 6         |
| 129 | The Formation of Fine-Grained Structure in S304H-Type Austenitic Stainless Steel during Hot-To-Warm<br>Working. Materials Science Forum, 2012, 715-716, 380-385.                 | 0.3 | 6         |
| 130 | Formation of Ultrafine-Grained Structures in 304L and 316L Stainless Steels by Recrystallization and Reverse Phase Transformation. Materials Science Forum, 0, 838-839, 410-415. | 0.3 | 6         |
| 131 | Annealing Behavior and Kinetics of Primary Recrystallization of Copper. Defect and Diffusion Forum, 2018, 385, 343-348.                                                          | 0.4 | 6         |
| 132 | Grain sizes and dislocation densities in fcc-metallic materials processed by warm to hot working.<br>Journal of Physics: Conference Series, 2019, 1270, 012039.                  | 0.3 | 6         |
| 133 | Structural changes in refractory steel 10Kh9V2MFBR due to creep at 650°C. Metal Science and Heat<br>Treatment, 2010, 52, 111-117.                                                | 0.2 | 5         |
| 134 | Structural changes in steel 10Kh9K3V1M1FBR due to creep. Metal Science and Heat Treatment, 2010, 52, 118-127.                                                                    | 0.2 | 5         |
| 135 | Dynamic Recrystallization Mechanisms Operating under Different Processing Conditions. Materials Science Forum, 0, 706-709, 2704-2709.                                            | 0.3 | 5         |
| 136 | Modeling the effect of deformation on strength of a Fe-23Mn-0.3C-1.5Al TWIP steel. IOP Conference<br>Series: Materials Science and Engineering, 2014, 63, 012059.                | 0.3 | 5         |
| 137 | Effect of Tempering on Microstructure and Creep Properties of P911 Steel. Materials Science Forum, 2016, 879, 1963-1968.                                                         | 0.3 | 5         |
| 138 | Hot Deformation and Dynamic Recrystallization of 18%Mn Twinningâ€Induced Plasticity Steels.<br>Advanced Engineering Materials, 2020, 22, 2000098.                                | 1.6 | 5         |
| 139 | On the transformation-induced plasticity of a medium-manganese steel. Materials Letters, 2021, 304, 130599.                                                                      | 1.3 | 5         |
| 140 | Cryogenic impact toughness of a work hardened austenitic stainless steel. Materialia, 2022, 23, 101460.                                                                          | 1.3 | 5         |
| 141 | Microstructure Evolution in a 9%Cr Heat Resistant Steel during Creep Tests. Materials Science Forum, 2010, 638-642, 2315-2320.                                                   | 0.3 | 4         |
| 142 | Structural Changes in a 304-Type Austenitic Stainless Steel Processed by Multiple Hot Rolling.<br>Advanced Materials Research, 2011, 409, 730-735.                               | 0.3 | 4         |
| 143 | Effect of large plastic deformation on microstructure and mechanical properties of a TWIP steel. IOP<br>Conference Series: Materials Science and Engineering, 2014, 63, 012064.  | 0.3 | 4         |
| 144 | Effect of Cold Rolling on Microstructure and Mechanical Properties of a Fe-23Mn-0.3C-1.5Al TWIP Steel. Advanced Materials Research, 0, 922, 394-399.                             | 0.3 | 4         |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Effect of multidirectional forging and equal channel angular pressing on ultrafine grain formation in a Cu- Cr-Zr alloy. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012097.    | 0.3 | 4         |
| 146 | Deformation Microstructures and Mechanical Properties of an Austenitic Stainless Steel Subjected to<br>Warm Rolling. Materials Science Forum, 0, 879, 1414-1419.                                        | 0.3 | 4         |
| 147 | Influence of cold forging and annealing on microstructure and mechanical properties of a high-Mn<br>TWIP steel. Metallic Materials, 2017, 55, 161-167.                                                  | 0.2 | 4         |
| 148 | Microstructure and Mechanical Properties of Structural Metals and Alloys. Metals, 2018, 8, 676.                                                                                                         | 1.0 | 4         |
| 149 | Outstanding impact toughness of low-alloyed steel with fine lamellar microstructure. Materials<br>Letters, 2021, 303, 130547.                                                                           | 1.3 | 4         |
| 150 | Grain Refinement in a 304 Type Stainless Steel Caused by Multiple Deformation at 0.5 Tm. ISIJ<br>International, 2000, 40, S164-S168.                                                                    | 0.6 | 4         |
| 151 | On Structural Mechanism of Continuous Recrystallization in Ferritic Stainless Steel after Large<br>Strain Processing. Materials Science Forum, 2006, 503-504, 323-328.                                  | 0.3 | 3         |
| 152 | Texture Invariant Annealing in Severely Deformed Steel. Materials Science Forum, 2007, 558-559, 101-106.                                                                                                | 0.3 | 3         |
| 153 | Nanostructure Evolution in an Austenitic Stainless Steel Subjected to Multiple Forging at Ambient<br>Temperature. Materials Science Forum, 2010, 667-669, 553-558.                                      | 0.3 | 3         |
| 154 | Microstructure and Deformation Behavior of a Hot Forged 9%Cr Creep Resistant Steel. Advanced Materials Research, 2011, 409, 672-677.                                                                    | 0.3 | 3         |
| 155 | Zener Pinning Pressure in Tempered Martensite Lath Structure. Materials Science Forum, 2012, 715-716, 745-750.                                                                                          | 0.3 | 3         |
| 156 | Structure and Fatigue Properties of Cr-Ni-Ti Austenitic Steel after Equal Channel Angular Pressing.<br>Materials Science Forum, 0, 783-786, 2611-2616.                                                  | 0.3 | 3         |
| 157 | Microstructure Evolution in a 304-Type Austenitic Stainless Steel during Multidirectional Forging at<br>Ambient Temperature. Materials Science Forum, 0, 783-786, 831-836.                              | 0.3 | 3         |
| 158 | On Regularities of Grain Refinement through Large Strain Deformation. Materials Science Forum, 2016, 838-839, 314-319.                                                                                  | 0.3 | 3         |
| 159 | Ultrafine-Grained Structure and Mechanical Properties of a High-Mn Twinning Induced Plasticity<br>Steel. Materials Science Forum, 2016, 838-839, 392-397.                                               | 0.3 | 3         |
| 160 | Microstructure and Mechanical Properties of an Ultrafine Grained Medium-Mn Steel. Defect and Diffusion Forum, 2018, 385, 308-313.                                                                       | 0.4 | 3         |
| 161 | On strengthening of ultrafine grained austenitic steels subjected to large strain deformation. IOP Conference Series: Materials Science and Engineering, 2019, 672, 012021.                             | 0.3 | 3         |
| 162 | GRAIN BOUNDARY PLANE DISTRIBUTIONS IN 304 STEEL ANNEALED AT HIGH TEMPERATURE AFTER A PARALLEL PROCESSING OF MULTIPLE FORGING AND DIRECT ROLLING. Jinshu Xuebao/Acta Metallurgica Sinica, 2012, 48, 895. | 0.3 | 3         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Structural changes in corrosion-resistant steels during hot deformation. Metal Science and Heat<br>Treatment, 1992, 34, 324-329.                                                                      | 0.2 | 2         |
| 164 | Evolution of Grain Boundaries and Subboundaries in Stainless Steel during Dynamic<br>Recrystallization. Materials Science Forum, 2003, 426-432, 1005-1010.                                            | 0.3 | 2         |
| 165 | Recovery and Recrystallization in Cold Worked Fe – O Steels. Materials Science Forum, 2004, 467-470, 229-234.                                                                                         | 0.3 | 2         |
| 166 | Deformation Microstructures in a Two-Phase Stainless Steel during Large Strain Deformation.<br>Materials Science Forum, 2006, 503-504, 305-310.                                                       | 0.3 | 2         |
| 167 | Plastic flow of the mechanically alloyed Fe-0.6%O at temperatures of 550–700°C. Physics of Metals<br>and Metallography, 2009, 107, 516-521.                                                           | 0.3 | 2         |
| 168 | Effect of austenization temperature on creep resistance of steel 10Kh9V2MFBR. Metal Science and Heat<br>Treatment, 2010, 52, 166-170.                                                                 | 0.2 | 2         |
| 169 | The Formation of Submicrometer Scale Grains in a Super304H Steel during Multiple Compressions at 700°C. Materials Science Forum, 2010, 667-669, 565-570.                                              | 0.3 | 2         |
| 170 | Microstructure Evolution in a Cu-Ag Alloy during Large Strain Deformation and Annealing. Materials<br>Science Forum, 2010, 667-669, 493-498.                                                          | 0.3 | 2         |
| 171 | Submicrocrystalline Structures and Tensile Behaviour of Stainless Steels Subjected to Large Strain Deformation and Subsequent Annealing. Advanced Materials Research, 2011, 409, 607-612.             | 0.3 | 2         |
| 172 | Grain Refinement in Austenitic Stainless Steel during Warm Screw Rolling. Materials Science Forum,<br>0, 715-716, 889-894.                                                                            | 0.3 | 2         |
| 173 | Evolution of Laves-Phase Particles in a Low Carbon 9%Cr Martensitic Steel during Creep at 650°C.<br>Advanced Materials Research, 0, 922, 155-160.                                                     | 0.3 | 2         |
| 174 | Static Grain Growth in an Austenitic Stainless Steel Subjected to Intense Plastic Straining. Materials<br>Science Forum, 0, 783-786, 1021-1026.                                                       | 0.3 | 2         |
| 175 | Tensile behavior of an austenitic stainless steel subjected to multidirectional forging. IOP Conference<br>Series: Materials Science and Engineering, 2014, 63, 012063.                               | 0.3 | 2         |
| 176 | Mechanical characteristics and microstructure of weld joint of high-temperature martensitic steel containing 9% Cr. Physics of Metals and Metallography, 2016, 117, 378-389.                          | 0.3 | 2         |
| 177 | Effect of thermomechanical treatment on microstructure and mechanical properties of high-strength low-alloy steel. AIP Conference Proceedings, 2017, , .                                              | 0.3 | 2         |
| 178 | Effect of tempering on microstructure and mechanical properties of a Ta-added 9%Cr steel with high<br>B and low N contents. IOP Conference Series: Materials Science and Engineering, 0, 525, 012049. | 0.3 | 2         |
| 179 | Microstructure and Crystallographic Texture of Silicon Iron Modified by Torsion Under<br>Quasihydrostatic Pressure. Russian Physics Journal, 2019, 62, 1518-1528.                                     | 0.2 | 2         |
| 180 | Structure and Texture Evolution of the Metastable Austenitic Steel during Cold Working. Physics of Metals and Metallography, 2020, 121, 675-682.                                                      | 0.3 | 2         |

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | On friction stir welding of a medium manganese austenitic steel. Philosophical Magazine, 2021, 101, 576-597.                                                                            | 0.7 | 2         |
| 182 | Effect of deformation techniques on the microstructure and mechanical properties of a copper alloy.<br>IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012030.    | 0.3 | 2         |
| 183 | Stability of the Ultrafine-Grained Structure of Austenitic Corrosion-Resistant Steels during Annealing. Physics of Metals and Metallography, 2021, 122, 775-781.                        | 0.3 | 2         |
| 184 | On Annealing Mechanisms Operating in Ultra Fine Grained Alloys. , 2005, , 780-785.                                                                                                      |     | 1         |
| 185 | Microstructure fragmentation in Fe-O alloy during severe plastic deformation. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1274-1277.                                | 0.1 | 1         |
| 186 | Dynamic polygonization in 9%Cr heat resistant steel. Journal of Physics: Conference Series, 2010, 240, 012070.                                                                          | 0.3 | 1         |
| 187 | Microstructure Evolution in a 3%Co Modified P911 Heat Resistant Steel under Creep Conditions.<br>Advanced Materials Research, 0, 89-91, 295-300.                                        | 0.3 | 1         |
| 188 | Migration of Dislocation Boundaries in a Modified P911 3%Co Heat Resistant Steel during Tempering,<br>Ageing and Creep. Materials Science Forum, 2012, 715-716, 953-958.                | 0.3 | 1         |
| 189 | Kinetics of Grain Refinement by Warm Deformation of 304-Type Stainless Steel. Materials Science<br>Forum, 0, 706-709, 2326-2331.                                                        | 0.3 | 1         |
| 190 | Mechanical Properties at Elevated Temperatures of an S304H-Type Austenitic Stainless Steel Processed<br>by Warm Rolling. Advanced Materials Research, 0, 922, 844-849.                  | 0.3 | 1         |
| 191 | Effect of Deformation Structure on Strength of a Low Alloyed Cu-Cr-Zr Alloy. Materials Science Forum, 2016, 879, 1332-1337.                                                             | 0.3 | 1         |
| 192 | Kinetics of Submicrocrystalline Structure Formation in a Cu-Cr-Zr Alloy during Large Plastic<br>Deformation. Materials Science Forum, 2016, 879, 1749-1754.                             | 0.3 | 1         |
| 193 | Austenitic Stainless Steel: Microstructural Evolution. , 2016, , 243-253.                                                                                                               |     | 1         |
| 194 | Development of Fine-Grained High-Mn Steelby Cold Rolling and Annealing. Materials Science Forum, 0,<br>838-839, 434-439.                                                                | 0.3 | 1         |
| 195 | Effect of large strain warm rolling and subsequent annealing on the microstructure and mechanical properties of austenitic stainless steels. AIP Conference Proceedings, 2017, , .      | 0.3 | 1         |
| 196 | Effect of Cold Rolling and Subsequent Annealing on the Microstructure and the Microtexture of Austenitic Corrosion-Resistant Steels. Russian Metallurgy (Metally), 2019, 2019, 315-325. | 0.1 | 1         |
| 197 | Deformation and Recrystallization Textures in a High-Mn Steel Subjected to Large Strain Cold Rolling. , 2016, , 147-152.                                                                |     | 1         |
| 198 | Deformation Mechanisms Operating in TWIP/TRIP Steels Processed by Warm to Hot Working. Acta<br>Physica Polonica A, 2018, 134, 640-643.                                                  | 0.2 | 1         |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Effect of tempforming temperature on the microstructure and mechanical properties of A high-strength low-carbon steel. , 2019, , .                                                          |     | 1         |
| 200 | Dynamic Recrystallization in Austenitic Stainless Steel during Hot Working with Decreasing Deformation Temperature. Materials Performance and Characterization, 2019, 8, 808-820.           | 0.2 | 1         |
| 201 | Mechanical properties of high-strength low-alloy steel after tempforming. AIP Conference<br>Proceedings, 2022, , .                                                                          | 0.3 | 1         |
| 202 | Effect of Deformation Mechanisms on Dynamic Recrystallization of Ferrite Stainless Steel. Key<br>Engineering Materials, 1995, 97-98, 425-430.                                               | 0.4 | 0         |
| 203 | Two Types of Grain Boundaries in Deformed Materials. Materials Science Forum, 1996, 207-209, 461-464.                                                                                       | 0.3 | 0         |
| 204 | Recovery in 15%Cr Ferritic Stainless Steel after Large Strain Deformation. Materials Science Forum, 2007, 558-559, 119-124.                                                                 | 0.3 | 0         |
| 205 | Mechanisms of New Grain Formation in a Ni-20%Cr Alloy during Warm to Hot Working. Materials<br>Science Forum, 2010, 638-642, 2221-2226.                                                     | 0.3 | 0         |
| 206 | Recrystallization Mechanisms Leading to the Formation of Nanoscale Grains in a Ni-20%Cr Alloy<br>Subjected to Intense Plastic Deformation. Materials Science Forum, 2010, 667-669, 349-354. | 0.3 | 0         |
| 207 | Creep Behavior of an Oxide Dispersion Strengthened Iron with Ultrafine Grain Structure. Materials<br>Science Forum, 2010, 638-642, 3194-3199.                                               | 0.3 | 0         |
| 208 | Internal stresses in a 15%Cr ferritic stainless steel after large strain unidirectional processing.<br>Journal of Physics: Conference Series, 2010, 240, 012115.                            | 0.3 | 0         |
| 209 | Microstructure Evolution in a P911 Steel under Creep Conditions. Advanced Materials Research, 0, 409, 223-227.                                                                              | 0.3 | 0         |
| 210 | Recrystallization Processes in a Ni-20%Cr Alloy Subjected to High-Pressure Torsion. Materials Science<br>Forum, 2012, 715-716, 309-314.                                                     | 0.3 | 0         |
| 211 | Ultrafine Grain Evolution in Austenitic Stainless Steel during Large Strain Deformation and Subsequent Annealing. Materials Science Forum, 0, 715-716, 273-278.                             | 0.3 | 0         |
| 212 | Structural Changes in a 9%Cr Creep Resistant Steel during Creep Test. Materials Science Forum, 2012,<br>715-716, 895-900.                                                                   | 0.3 | 0         |
| 213 | Microstructure evolution in a Cu-Cr-Zr alloy during warm intense plastic straining. IOP Conference<br>Series: Materials Science and Engineering, 2014, 63, 012094.                          | 0.3 | 0         |
| 214 | Ultrafine Grain Evolution in a Cu-Cr-Zr Alloy during Warm Multidirectional Forging. Materials<br>Science Forum, 0, 783-786, 2683-2688.                                                      | 0.3 | 0         |
| 215 | Analysis of the deformation behavior of low Cu-Cr-Zr alloy. AIP Conference Proceedings, 2016, ,                                                                                             | 0.3 | 0         |
| 216 | Microstructure and mechanical properties of advanced austenitic steel. AIP Conference Proceedings, 2016, , .                                                                                | 0.3 | 0         |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Analysis of the tensile behavior of high-Mn TWIP steel based on the microstructural evolution. AIP Conference Proceedings, 2016, , .                                        | 0.3 | 0         |
| 218 | Deformation and Recrystallization Textures in A High-Mn Steel Subjected to Large Strain Cold Rolling.<br>, 0, , 147-152.                                                    |     | 0         |
| 219 | Effects of Initial Microstructure and Deformation Method on Grain Refinement in a Cu-Cr-Zr Alloy.<br>Materials Science Forum, 0, 838-839, 308-313.                          | 0.3 | Ο         |
| 220 | Superplastic Behavior of a Cu-Cr-Zr Alloy Subjected to ECAP. Materials Science Forum, 2016, 838-839, 404-409.                                                               | 0.3 | 0         |
| 221 | Effect of annealing treatment on ECAP structure in Cu-Cr-Zr bronze. AIP Conference Proceedings, 2017, , .                                                                   | 0.3 | Ο         |
| 222 | Advanced automobile steels subjected to plate rolling at 773â€K or 1373â€K. AIP Conference Proceedings,<br>2017, , .                                                        | 0.3 | 0         |
| 223 | Recrystallization kinetics and texture evolution during annealing of cold-rolled high-Mn steel. AIP<br>Conference Proceedings, 2017, , .                                    | 0.3 | 0         |
| 224 | Microstructure and mechanical properties of a modified P911-type steel weld joint. AIP Conference<br>Proceedings, 2018, , .                                                 | 0.3 | 0         |
| 225 | Mechanical Behavior of High-Mn Steels Processed by Hot Rolling. Materials Science Forum, 2018, 941, 299-304.                                                                | 0.3 | 0         |
| 226 | Dynamic recrystallization of a high-Mn TWIP steel during multiple forging at 800°C. AIP Conference<br>Proceedings, 2018, , .                                                | 0.3 | 0         |
| 227 | Effect of Deformation Temperature on Microstructure and Mechanical Properties of Low-Alloyed Copper Alloy. Materials Science Forum, 2018, 941, 982-987.                     | 0.3 | Ο         |
| 228 | Thermal stability of recycled copper. AIP Conference Proceedings, 2018, , .                                                                                                 | 0.3 | 0         |
| 229 | Effect of hot working conditions on microstructure and mechanical properties of a high-Mn TWIP steel. AIP Conference Proceedings, 2018, , .                                 | 0.3 | 0         |
| 230 | On Primary Recrystallization of High-Mn Austenitic Steels. Defect and Diffusion Forum, 2018, 385, 337-342.                                                                  | 0.4 | 0         |
| 231 | Grain Orientation Spread in Dynamically Recrystallized Austenitic Steel. Materials Science Forum, 0, 1016, 50-55.                                                           | 0.3 | 0         |
| 232 | Microstructure of a low alloyed Cu-Cr-Zr alloy after ECAP-Conform. IOP Conference Series: Materials<br>Science and Engineering, 2021, 1014, 012029.                         | 0.3 | 0         |
| 233 | Effect of the deformation temperature on the deformation behavior of a Cu-Cr-Zr alloy. IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012033.        | 0.3 | 0         |
| 234 | Creep behavior and microstructure of a Ta-added 9%Cr steel with high B and low N contents. IOP<br>Conference Series: Materials Science and Engineering, 2021, 1014, 012055. | 0.3 | 0         |

| #   | Article                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Creep strength and microstructure of a modified P911-type steel weld joint. IOP Conference Series:<br>Materials Science and Engineering, 2021, 1014, 012056.      | 0.3 | 0         |
| 236 | Annealed Microstructures in Mechanically Milled Fe-0.6%O Powders. , 0, , 558-563.                                                                                 |     | 0         |
| 237 | MECHANISMS OF THE FORMATION OF HIGH ANGLE GRAIN BOUNDARIES DURING THE HOT DEFORMATION OF STAINLESS STEELS. Journal De Physique Colloque, 1990, 51, C1-435-C1-438. | 0.2 | Ο         |
| 238 | Microstructure and mechanical properties of an austenitic stainless steel subjected to multiple forging and subsequent annealing. , 2019, , .                     |     | 0         |
| 239 | Effect of rolling temperature and thickness reduction on the strength of a 316L steel. AIP Conference<br>Proceedings, 2022, , .                                   | 0.3 | Ο         |
| 240 | Microtexture evolutions in 304L and 316L stainless steels during rolling at 200°C and annealing. AIP<br>Conference Proceedings, 2022, , .                         | 0.3 | 0         |
| 241 | Effect of advanced thermo-mechanical treatment on microstructure and properties of a low-alloyed copper alloy. AIP Conference Proceedings, 2022, , .              | 0.3 | 0         |