
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/19172/publications.pdf Version: 2024-02-01

Κλι σιτ ςμλμ

#	Article	IF	CITATIONS
1	Machine learning prediction of the conversion of lignocellulosic biomass during hydrothermal carbonization. Biofuels, 2022, 13, 703-715.	2.4	23
2	Conversion of pyrolytic non-condensable gases from polypropylene co-polymer into bamboo-type carbon nanotubes and high-quality oil using biochar as catalyst. Journal of Environmental Management, 2022, 301, 113791.	7.8	19
3	The effect of KOH activation and Ag nanoparticle incorporation on rice husk-based porous materials for wastewater treatment. Chemosphere, 2022, 291, 132760.	8.2	9
4	Mechanistic and kinetic study of the hydrothermal treatment of paunch waste. Chemical Engineering Research and Design, 2022, 177, 541-553.	5.6	1
5	Direct conversion of CO ₂ to solid carbon by Ga-based liquid metals. Energy and Environmental Science, 2022, 15, 595-600.	30.8	45
6	Effects of temperature and carrier gas on physico-chemical properties of biochar derived from biosolids. Journal of Analytical and Applied Pyrolysis, 2022, 164, 105542.	5.5	24
7	Advances in biosolids pyrolysis: Roles of pre-treatments, catalysts, and co-feeding on products distribution and high-value chemical production. Journal of Analytical and Applied Pyrolysis, 2022, 166, 105608.	5.5	13
8	Evaluation of Cytoâ€genotoxicity of Perfluorooctane Sulfonate (PFOS) to <i>Allium cepa</i> . Environmental Toxicology and Chemistry, 2021, 40, 792-798.	4.3	14
9	Dissolution reaction kinetics and mass transfer during aqueous choline chloride pre-treatment of oak wood. Bioresource Technology, 2021, 322, 124519.	9.6	5
10	Longâ€ŧerm effects of sewage sludge–derived biochar on the accumulation and availability of trace elements in a tropical soil. Journal of Environmental Quality, 2021, 50, 264-277.	2.0	19
11	Furfural and levoglucosenone production from the pyrolysis of ionic liquid pre-treated sugarcane straw. Cellulose, 2021, 28, 133-151.	4.9	7
12	Assessing the potential of sewage sludge-derived biochar as a novel phosphorus fertilizer: Influence of extractant solutions and pyrolysis temperatures. Waste Management, 2021, 124, 144-153.	7.4	56
13	Understanding the fate and control of road dust-associated microplastics in stormwater. Chemical Engineering Research and Design, 2021, 152, 47-57.	5.6	50
14	Can biochar be an effective and reliable biostimulating agent for the remediation of hydrocarbon-contaminated soils?. Environment International, 2021, 154, 106553.	10.0	40
15	Wet organic waste treatment via hydrothermal processing: A critical review. Chemosphere, 2021, 279, 130557.	8.2	77
16	Removal of PFASs from biosolids using a semi-pilot scale pyrolysis reactor and the application of biosolids derived biochar for the removal of PFASs from contaminated water. Environmental Science: Water Research and Technology, 2021, 7, 638-649.	2.4	33
17	Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(VI). Journal of Hazardous Materials, 2020, 389, 121827.	12.4	148
18	Production of hydrogen by catalytic methane decomposition using biochar and activated char produced from biosolids pyrolysis. International Journal of Hydrogen Energy, 2020, 45, 29978-29992.	7.1	46

#	Article	IF	CITATIONS
19	A critical literature review on biosolids to biochar: an alternative biosolids management option. Reviews in Environmental Science and Biotechnology, 2020, 19, 807-841.	8.1	49
20	Emerging investigator series: phosphorus recovery from municipal wastewater by adsorption on steelmaking slag preceding forward osmosis: an integrated process. Environmental Science: Water Research and Technology, 2020, 6, 1559-1567.	2.4	14
21	Experimental determination and modelling of the co-solvent and antisolvent behaviour of binary systems on the dissolution of pharma drug; L-aspartic acid and thermodynamic correlations. Journal of Molecular Liquids, 2020, 314, 113657.	4.9	8
22	Using Phosphorus-Rich Biochars to Remediate Lead-Contaminated Soil: Influence on Soil Enzymes and Extractable P. Agronomy, 2020, 10, 454.	3.0	10
23	Investigation of Reaction Mechanism and the Effects of Process Parameters on Ionic Liquid–Based Delignification of Sugarcane Straw. Bioenergy Research, 2020, 13, 1144-1158.	3.9	16
24	Comparative study of microwave and conventional solvothermal synthesis for magnetic carbon nanocomposites and bio-oil from rice husk. Journal of Environmental Chemical Engineering, 2019, 7, 103266.	6.7	15
25	Slow pyrolysis of biosolids in a bubbling fluidised bed reactor using biochar, activated char and lime. Journal of Analytical and Applied Pyrolysis, 2019, 144, 104697.	5.5	31
26	TGA-FTIR study on the slow pyrolysis of lignin and cellulose-rich fractions derived from imidazolium-based ionic liquid pre-treatment of sugarcane straw. Energy Conversion and Management, 2019, 200, 112067.	9.2	77
27	Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environmental Pollution, 2019, 255, 113326.	7.5	215
28	Rejection of rare earth elements from a simulated acid mine drainage using forward osmosis: The role of membrane orientation, solution pH, and temperature variation. Chemical Engineering Research and Design, 2019, 126, 53-59.	5.6	37
29	A Comparison of Ionic Liquids and Organic Solvents on the Separation of Cellulose-Rich Material from River Red Gum. Bioenergy Research, 2019, 12, 275-291.	3.9	21
30	Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides. Renewable Energy, 2019, 141, 707-716.	8.9	30
31	Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renewable and Sustainable Energy Reviews, 2019, 105, 268-292.	16.4	154
32	Measurement and Modeling of Solid–Liquid Equilibria of <scp>l</scp> -Glutamic Acid in Pure Solvents and Aqueous Binary Mixtures. Journal of Chemical & Engineering Data, 2019, 64, 1155-1165.	1.9	7
33	Transformation of biosolids to biochar: A case study. Environmental Progress and Sustainable Energy, 2019, 38, 13113.	2.3	19
34	Estimation of the carbonation reaction kinetic parameters for dilute methane and carbon dioxide conditions in a calcium looping process. Environmental Progress and Sustainable Energy, 2018, 37, 1312-1318.	2.3	3
35	Experimental investigations on entrained flow gasification of Torrefied Karanja Press Seed Cake. Journal of Environmental Chemical Engineering, 2018, 6, 1242-1249.	6.7	11
36	Kinetics and Design Parameter Determination for a Calciner Reactor in Unique Conditions of a Novel Greenhouse Calcium Looping Process. Energy & Fuels, 2018, 32, 33-43.	5.1	6

#	Article	IF	CITATIONS
37	An accurate model to predict drilling fluid density at wellbore conditions. Egyptian Journal of Petroleum, 2018, 27, 1-10.	2.6	34

 $_{38}$ Development and characterisation of charcoal briquettes from water hyacinth (Eichhornia) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{50}^{50}$ 702 Td $_{2.5}^{20}$

39	Physicochemical Properties of Biochars Produced from Biosolids in Victoria, Australia. International Journal of Environmental Research and Public Health, 2018, 15, 1459.	2.6	36
40	Oxygen–steam gasification of karanja press seed cake: Fixed bed experiments, ASPEN Plus process model development and benchmarking with saw dust, rice husk and sunflower husk. Journal of Environmental Chemical Engineering, 2018, 6, 3061-3069.	6.7	51
41	Ergonomic considerations for designing truck drivers' seats: The case of Bangladesh. Journal of Occupational Health, 2018, 60, 64-73.	2.1	12
42	A novel slag carbon arrestor process for energy recovery in steelmaking industry. Fuel Processing Technology, 2017, 155, 124-133.	7.2	4
43	Modification of lignites via low temperature ionic liquid treatment. Fuel Processing Technology, 2017, 155, 51-58.	7.2	44
44	Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures. Fuel, 2017, 202, 296-306.	6.4	62
45	Derivation of Kinetics and Design Parameters for a Carbonator Reactor in a Greenhouse Calcium Looping Process. Energy Technology, 2017, 5, 644-655.	3.8	1
46	Experimental investigations on the effect of pyrolytic bio–oil during the liquefaction of Karanja Press Seed Cake. Journal of Environmental Chemical Engineering, 2017, 5, 4986-4993.	6.7	11
47	Derivation of optimum operating conditions for the slow pyrolysis of Mahua press seed cake in a fixed bed batch reactor for bio–oil production. Journal of Environmental Chemical Engineering, 2017, 5, 4051-4063.	6.7	20
48	A correlation for predicting solids holdup in the dilute pneumatic conveying flow regime of circulating and interconnected fluidised beds. Powder Technology, 2016, 297, 357-366.	4.2	11
49	Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids. International Journal of Heat and Mass Transfer, 2016, 98, 778-787.	4.8	183
50	Experimental study of static and dynamic interactions between supercritical CO 2 /water and Australian granites. Geothermics, 2016, 64, 246-261.	3.4	12
51	Integration Options and Economic Analysis of an Integrated Chemical Looping Air Separation Process for Oxy-fuel Combustion. Energy & amp; Fuels, 2016, 30, 1741-1755.	5.1	37
52	Formation of persistent organic pollutants from 2,4,5-trichlorothiophenol combustion: a density functional theory investigation. Journal of Molecular Modeling, 2016, 22, 128.	1.8	8
53	Novel Calcium-Looping-Based Biomass-Integrated Gasification Combined Cycle: Thermodynamic Modeling and Experimental Study. Energy & Fuels, 2016, 30, 1730-1740.	5.1	19
54	Empirical Kinetic Model of a Stone Dust Looping Carbonator for Ventilation Air Methane Abatement. Energy & Fuels, 2016, 30, 1869-1878.	5.1	11

#	Article	IF	CITATIONS
55	Formation of benzofuran and chlorobenzofuran from 1,3-dichloropropene: A quantum chemical investigation. International Journal of Quantum Chemistry, 2015, 115, 1739-1745.	2.0	2
56	A Novel Hybrid Chemical-Looping Oxy Combustor Process for the Combustion of Solid and Gaseous Fuels: Thermodynamic Analysis. Energy & Fuels, 2015, 29, 602-617.	5.1	12
57	CFD–DEM simulation of solid circulation rate in the cold flow model of chemical looping systems. Chemical Engineering Research and Design, 2015, 95, 262-280.	5.6	50
58	Application of a novel calcium looping process for production of heat and carbon dioxide enrichment of greenhouses. Energy Conversion and Management, 2015, 103, 129-138.	9.2	10
59	Techno-Economic Assessment of Integrated Chemical Looping Air Separation for Oxy-Fuel Combustion: An Australian Case Study. Energy & Fuels, 2015, 29, 2074-2088.	5.1	44
60	Equilibrium thermodynamic analyses of methanol production via a novel Chemical Looping Carbon Arrestor process. Energy Conversion and Management, 2015, 96, 392-402.	9.2	15
61	Formation of chlorobenzenes by oxidative thermal decomposition of 1,3-dichloropropene. Combustion and Flame, 2015, 162, 2414-2421.	5.2	12
62	Investigations into Physicochemical Changes in Thermal Coals during Low-Temperature Ionic Liquid Treatment. Energy & Fuels, 2015, 29, 7080-7088.	5.1	29
63	Quantum Chemical Molecular Dynamics Simulations of 1,3-Dichloropropene Combustion. Journal of Physical Chemistry A, 2015, 119, 9307-9316.	2.5	10
64	A feasibility study on a novel stone dust looping process for abatement of ventilation air methane. Fuel Processing Technology, 2015, 140, 285-296.	7.2	17
65	Predicting the solid circulation rate in chemical looping combustion systems using pressure drop measurements. Powder Technology, 2015, 286, 572-581.	4.2	18
66	Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction. Fuel, 2015, 143, 244-252.	6.4	59
67	Mercury and SO3 Emissions in Oxy-fuel Combustion. Energy Procedia, 2014, 63, 386-402.	1.8	23
68	Development of a Cu–Mg-Based Oxygen Carrier with SiO ₂ as a Support for Chemical Looping Air Separation. Energy & Fuels, 2014, 28, 163-172.	5.1	63
69	Analysis on Chemical Reaction Kinetics of CuO/SiO ₂ Oxygen Carriers for Chemical Looping Air Separation. Energy & Fuels, 2014, 28, 173-182.	5.1	62
70	SO ₃ Emissions and Removal by Ash in Coal-Fired Oxy-Fuel Combustion. Energy & Fuels, 2014, 28, 5296-5306.	5.1	50
71	Reactivity of Al ₂ O ₃ - or SiO ₂ -Supported Cu-, Mn-, and Co-Based Oxygen Carriers for Chemical Looping Air Separation. Energy & Fuels, 2014, 28, 1284-1294.	5.1	81
72	Mercury Emissions and Removal by Ash in Coal-Fired Oxy-fuel Combustion. Energy & Fuels, 2014, 28, 123-135.	5.1	42

#	Article	IF	CITATIONS
73	Interactions between vitrinite and inertinite-rich coals and the ionic liquid – [bmim][Cl]. Fuel, 2014, 119, 214-218.	6.4	35
74	Integration options for novel chemical looping air separation (ICLAS) process for oxygen production in oxy-fuel coal fired power plants. Fuel, 2013, 107, 356-370.	6.4	75
75	Effect of flue gas impurities on the performance of a chemical looping based air separation process for oxy-fuel combustion. Fuel, 2013, 103, 932-942.	6.4	50
76	Selection of Suitable Oxygen Carriers for Chemical Looping Air Separation: A Thermodynamic Approach. Energy & amp; Fuels, 2012, 26, 2038-2045.	5.1	120
77	Application of Concrete and Demolition Waste as CO ₂ Sorbent in Chemical Looping Gasification of Biomass. Energy & Fuels, 2012, 26, 2046-2057.	5.1	31
78	CFD based prediction of erosion rate in large scale wall-fired boiler. Applied Thermal Engineering, 2012, 42, 90-100.	6.0	53