Ting-Hsiang Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1917167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomimetic MXene Textures with Enhanced Lightâ€ŧoâ€Heat Conversion for Solar Steam Generation and Wearable Thermal Management. Advanced Energy Materials, 2019, 9, 1901687.	19.5	210
2	Stretchable electrochemical energy storage devices. Chemical Society Reviews, 2020, 49, 4466-4495.	38.1	209
3	Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochemistry Communications, 2015, 58, 51-56.	4.7	171
4	Controlled Crumpling of Two-Dimensional Titanium Carbide (MXene) for Highly Stretchable, Bendable, Efficient Supercapacitors. ACS Nano, 2018, 12, 8048-8059.	14.6	136
5	Planar Heterojunction Perovskite Solar Cells Incorporating Metal–Organic Framework Nanocrystals. Advanced Materials, 2015, 27, 7229-7235.	21.0	134
6	Stretchable Graphene Pressure Sensors with Shar-Pei-like Hierarchical Wrinkles for Collision-Aware Surgical Robotics. ACS Applied Materials & Interfaces, 2019, 11, 10226-10236.	8.0	98
7	Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids. ACS Applied Materials & Interfaces, 2016, 8, 30351-30361.	8.0	97
8	Enhanced Charge Collection in MOFâ€525–PEDOT Nanotube Composites Enable Highly Sensitive Biosensing. Advanced Science, 2017, 4, 1700261.	11.2	95
9	Post metalation of solvothermally grown electroactive porphyrin metal–organic framework thin films. Chemical Communications, 2015, 51, 2414-2417.	4.1	94
10	An electrochromic device based on Prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene. Solar Energy Materials and Solar Cells, 2016, 147, 75-84.	6.2	78
11	Inkjet-printed porphyrinic metal–organic framework thin films for electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 11094-11102.	10.3	73
12	Thermally Cured Dual Functional Viologen-Based All-in-One Electrochromic Devices with Panchromatic Modulation. ACS Applied Materials & amp; Interfaces, 2016, 8, 4175-4184.	8.0	73
13	Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers. Scientific Reports, 2016, 6, 34319.	3.3	72
14	Multifunctionality and Mechanical Actuation of 2D Materials for Skinâ€Mimicking Capabilities. Advanced Materials, 2018, 30, e1802418.	21.0	72
15	Intercalation of Metal Ions into Ti ₃ C ₂ T <i>_x</i> MXene Electrodes for Highâ€Arealâ€Capacitance Microsupercapacitors with Neutral Multivalent Electrolytes. Advanced Functional Materials, 2020, 30, 2003721.	14.9	61
16	Multi-color electrochromic devices based on phenyl and heptyl viologens immobilized with UV-cured polymer electrolyte. Solar Energy Materials and Solar Cells, 2018, 177, 75-81.	6.2	55
17	A high contrast solid-state electrochromic device based on nano-structural Prussian blue and poly(butyl viologen) thin films. Solar Energy Materials and Solar Cells, 2016, 145, 35-41.	6.2	54
18	Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities. Science Robotics, 2019, 4, .	17.6	53

TING-HSIANG CHANG

#	Article	IF	CITATIONS
19	Synthesis of MOFâ€525 Derived Nanoporous Carbons with Different Particle Sizes for Supercapacitor Application. Chemistry - an Asian Journal, 2017, 12, 2857-2862.	3.3	52
20	Synergistic Antimicrobial Capability of Magnetically Oriented Graphene Oxide Conjugated with Gold Nanoclusters. Advanced Functional Materials, 2019, 29, 1904603.	14.9	51
21	Heterogeneous, 3D Architecturing of 2D Titanium Carbide (MXene) for Microdroplet Manipulation and Voice Recognition. ACS Applied Materials & Interfaces, 2020, 12, 8392-8402.	8.0	44
22	Lightâ€toâ€Heat Conversion: Biomimetic MXene Textures with Enhanced Lightâ€toâ€Heat Conversion for Solar Steam Generation and Wearable Thermal Management (Adv. Energy Mater. 34/2019). Advanced Energy Materials, 2019, 9, 1970141.	19.5	43
23	Valence-Dependent Electrical Conductivity in a 3D Tetrahydroxyquinone-Based Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 21243-21248.	13.7	39
24	Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells. Nano Energy, 2019, 58, 138-146.	16.0	38
25	Crumpling and Unfolding of Montmorillonite Hybrid Nanocoatings as Stretchable Flameâ€Retardant Skin. Small, 2018, 14, e1800596.	10.0	36
26	An all-organic solid-state electrochromic device containing poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 - Cells, 2015, 143, 606-612.	467 Td (fl 6.2	uoride-co-he 31
27	A panchromatic electrochromic device composed of Ru(ii)/Fe(ii)-based heterometallo-supramolecular polymer. Journal of Materials Chemistry C, 2019, 7, 7554-7562.	5.5	30
28	Tunable Magnetic Response in 2D Materials via Reversible Intercalation of Paramagnetic Ions. Advanced Electronic Materials, 2019, 5, 1900040.	5.1	28
29	Graphene Oxide-Enabled Synthesis of Metal Oxide Origamis for Soft Robotics. ACS Nano, 2019, 13, 5410-5420.	14.6	28
30	An electrochromic device composed of metallo-supramolecular polyelectrolyte containing Cu(I) and polyaniline-carbon nanotube. Solar Energy Materials and Solar Cells, 2014, 126, 219-226.	6.2	17
31	Stretchable Ti ₃ C ₂ T _x MXene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. Journal of Materials Chemistry A, 2021, 9, 4664-4672.	10.3	15
32	Incorporation of plastic crystal and transparent UV-cured polymeric electrolyte in a complementary electrochromic device. Solar Energy Materials and Solar Cells, 2014, 126, 213-218.	6.2	11
33	Densely Packed and Highly Ordered Carbon Flower Particles for High Volumetric Performance. Small Science, 2021, 1, 2000067.	9.9	11
34	Influence of ferrocyanide on the long-term stability of poly(butyl viologen) thin film based electrochromic devices. Solar Energy Materials and Solar Cells, 2019, 200, 110012.	6.2	10
35	Highly Stretchable Flame-Retardant Skin for Soft Robotics with Hydrogel–Montmorillonite-Based Translucent Matrix. Soft Robotics, 2022, 9, 98-118.	8.0	9
36	High-Purity V ₂ O ₅ Nanosheets Synthesized from Gasification Waste: Flexible Energy Storage Devices and Environmental Assessment. ACS Sustainable Chemistry and Engineering, 0, ,	6.7	5

TING-HSIANG CHANG

#	Article	IF	CITATIONS
37	Widely color-temperature low-luminosity-loss electrochromic-tuned white light-emitting diodes. Optik, 2020, 203, 163994.	2.9	1
38	Densely Packed and Highly Ordered Carbon Flower Particles for High Volumetric Performance. Small Science, 2021, 1, 2170018.	9.9	1
39	Biomimetic Stretchable Sensor Resembling Shar-Pei Crumples with 2D Materials towards Collaborative Robotic Minimally Invasive Procedures. , 2019, , .		0
40	Synergistic Antimicrobial Nanomaterials: Synergistic Antimicrobial Capability of Magnetically Oriented Graphene Oxide Conjugated with Gold Nanoclusters (Adv. Funct. Mater. 46/2019). Advanced Functional Materials, 2019, 29, 1970320.	14.9	0