Mayra Eliana Valencia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1917115/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Synthesis and Application of Scaffolds of Chitosan-Graphene Oxide by the Freeze-Drying Method for Tissue Regeneration. Molecules, 2018, 23, 2651.	1.7	105
2	The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules, 2018, 8, 155.	1.8	85
3	Antimicrobial Films Based on Nanocomposites of Chitosan/Poly(vinyl alcohol)/Graphene Oxide for Biomedical Applications. Biomolecules, 2019, 9, 109.	1.8	84
4	Novel Bioactive and Antibacterial Acrylic Bone Cement Nanocomposites Modified with Graphene Oxide and Chitosan. International Journal of Molecular Sciences, 2019, 20, 2938.	1.8	42
5	Preparation of Chitosan/Poly(Vinyl Alcohol) Nanocomposite Films Incorporated with Oxidized Carbon Nano-Onions (Multi-Layer Fullerenes) for Tissue-Engineering Applications. Biomolecules, 2019, 9, 684.	1.8	26
6	Biocompatible and Antimicrobial Electrospun Membranes Based on Nanocomposites of Chitosan/Poly (Vinyl Alcohol)/Graphene Oxide. International Journal of Molecular Sciences, 2019, 20, 2987.	1.8	23
7	Synthesis, Characterization, and Histological Evaluation of Chitosan-Ruta Graveolens Essential Oil Films. Molecules, 2020, 25, 1688.	1.7	21
8	Chitosan/Polyvinyl Alcohol/Tea Tree Essential Oil Composite Films for Biomedical Applications. Polymers, 2021, 13, 3753.	2.0	18
9	Evaluation of the Biocompatibility of CS-Graphene Oxide Compounds In Vivo. International Journal of Molecular Sciences, 2019, 20, 1572.	1.8	17
10	The Role of Chitosan and Graphene Oxide in Bioactive and Antibacterial Properties of Acrylic Bone Cements. Biomolecules, 2020, 10, 1616.	1.8	15
11	Acrylic Bone Cements Modified with Graphene Oxide: Mechanical, Physical, and Antibacterial Properties. Polymers, 2020, 12, 1773.	2.0	14
12	Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies. Molecules, 2020, 25, 2308.	1.7	11
13	Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules, 2020, 25, 1203.	1.7	11
14	Biocompatibility Study of Electrospun Nanocomposite Membranes Based on Chitosan/Polyvinyl Alcohol/Oxidized Carbon Nano-Onions. Molecules, 2021, 26, 4753.	1.7	11
15	Acrylic Bone Cement Incorporated with Low Chitosan Loadings. Polymers, 2020, 12, 1617.	2.0	9
16	Osseointegration of Antimicrobial Acrylic Bone Cements Modified with Graphene Oxide and Chitosan. Applied Sciences (Switzerland), 2020, 10, 6528.	1.3	8
17	Influence of the chitosan morphology on the properties of acrylic cements and their biocompatibility. RSC Advances, 2020, 10, 31156-31164	1.7	6
18	Optimization of Mechanical and Setting Properties in Acrylic Bone Cements Added with Graphene Oxide. Applied Sciences (Switzerland), 2021, 11, 5185.	1.3	4

#	Article	IF	CITATIONS
19	Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres. Biomimetics, 2020, 5, 63.	1.5	0