
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1916943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid Biochar/Ceria Nanomaterials: Synthesis, Characterization and Activity Assessment for the Persulfate-Induced Degradation of Antibiotic Sulfamethoxazole. Nanomaterials, 2022, 12, 194.	1.9	8
2	The interplay between acid-base properties and Fermi level pinning of a nano dispersed tungsten oxide - titania catalytic system. Journal of Colloid and Interface Science, 2022, 614, 666-676.	5.0	5
3	Tuning the Physicochemical Properties of Nanostructured Materials through Advanced Preparation Methods. Nanomaterials, 2022, 12, 956.	1.9	0
4	Impact of Hydrothermally Prepared Support on the Catalytic Properties of CuCe Oxide for Preferential CO Oxidation Reaction. Catalysts, 2022, 12, 674.	1.6	5
5	Combined activation of persulfate by biochars and artificial light for the degradation of sulfamethoxazole in aqueous matrices. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136, 104440.	2.7	11

Degradation of 4-Tert-Butylphenol in Water Using Mono-Doped (M1: Mo, W) and Co-Doped (M2-M1: Cu,) Tj ETQqQ 0 rgBT Overlock

U		1.9	,
7	Enhancement of the photoelectrochemical production of hydrogen peroxide under intermittent light supply in the presence of an optimized biochar supercapacitor. Electrochimica Acta, 2022, 427, 140846.	2.6	7
8	Biochar from Spent Malt Rootlets and Its Application to an Energy Conversion and Storage Device. Chemosensors, 2021, 9, 57.	1.8	14
9	Recent Advances in Cobalt and Related Catalysts: From Catalyst Preparation to Catalytic Performance. Catalysts, 2021, 11, 420.	1.6	2
10	Effect of sodium persulfate treatment on the physicochemical properties and catalytic activity of biochar prepared from spent malt rootlets. Journal of Environmental Chemical Engineering, 2021, 9, 105071.	3.3	32
11	Oxidation of Sulfamethoxazole by Rice Husk Biochar-Activated Persulfate. Catalysts, 2021, 11, 850.	1.6	37
12	Conversion of Scenedesmus rubescens Lipid into Biodiesel by Biochar of Different Origin. Catalysts, 2021, 11, 1116.	1.6	5
13	Valorisation of agricultural waste derived biochars in aquaculture to remove organic micropollutants from water – experimental study and molecular dynamics simulations. Journal of Environmental Management, 2021, 300, 113717.	3.8	34
14	On the Performance of a Sustainable Rice Husk Biochar for the Activation of Persulfate and the Degradation of Antibiotics. Catalysts, 2021, 11, 1303.	1.6	17
15	Copper-promoted ceria catalysts for CO oxidation reaction. Catalysis Today, 2020, 355, 647-653.	2.2	21
16	Biochar obtained by carbonization of spent coffee grounds and its application in the construction of an energy storage device. Chemical Engineering Journal Advances, 2020, 4, 100061.	2.4	32
17	Activation of persulfate by biochar from spent malt rootlets for the degradation of trimethoprim in the presence of inorganic ions. Journal of Chemical Technology and Biotechnology, 2020, 95, 2348-2358.	1.6	37
18	Transesterification activity of modified biochars from spent malt rootlets using triacetin. Journal of Cleaner Production, 2020, 259, 120931.	4.6	32

#	Article	IF	CITATIONS
19	Degradation of sulfamethoxazole with persulfate using spent coffee grounds biochar as activator. Journal of Environmental Management, 2020, 271, 111022.	3.8	46
20	The Influence of Preparation Method on the Physicochemical Characteristics and Catalytic Activity of Co/TiO2 Catalysts. Catalysts, 2020, 10, 88.	1.6	7
21	Degradation of methylparaben by sonocatalysis using a Co–Fe magnetic carbon xerogel. Ultrasonics Sonochemistry, 2020, 64, 105045.	3.8	29
22	Using diffuse reflectance spectroscopy (DRS) technique for studying biofilm formation on LDPE and PET surfaces: laboratory and field experiments. Environmental Science and Pollution Research, 2020, 27, 12055-12064.	2.7	8
23	Lipid conversion of <i>Scenedesmus rubescens</i> biomass into biodiesel using biochar catalysts from malt spent rootlets. Journal of Chemical Technology and Biotechnology, 2020, 95, 2421-2429.	1.6	14
24	Sonochemical degradation of propylparaben in the presence of agro-industrial biochar. Journal of Environmental Chemical Engineering, 2020, 8, 104010.	3.3	16
25	Effect of Carbon Support on the Electrocatalytic Properties of Ptâ^'Ru Catalysts. ChemElectroChem, 2019, 6, 4970-4979.	1.7	17
26	Effect of Carbon Support on the Electrocatalytic Properties of Ptâ´'Ru Catalysts. ChemElectroChem, 2019, 6, 4921-4921.	1.7	2
27	Tuning the Catalytic Properties of Copper-Promoted Nanoceria via a Hydrothermal Method. Catalysts, 2019, 9, 138.	1.6	26
28	Activation of Persulfate by Biochars from Valorized Olive Stones for the Degradation of Sulfamethoxazole. Catalysts, 2019, 9, 419.	1.6	54
29	A Novel Post‧ynthesis Modification of CuO eO ₂ Catalysts: Effect on Their Activity for Selective CO Oxidation. ChemCatChem, 2018, 10, 2096-2106.	1.8	35
30	Electrochemical promotion of carbon supported Pt, Rh and Pd catalysts for H ₂ oxidation in aqueous alkaline media. Journal of Chemical Technology and Biotechnology, 2018, 93, 1542-1548.	1.6	5
31	Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: Factors affecting the activation and degradation processes. Catalysis Today, 2018, 313, 128-133.	2.2	148
32	Study of low temperature alcohol electro-reforming. Materials Today: Proceedings, 2018, 5, 27337-27344.	0.9	7
33	Biochars and Their Use as Transesterification Catalysts for Biodiesel Production: A Short Review. Catalysts, 2018, 8, 562.	1.6	51
34	Effect of TiO2 on Pt-Ru-based anodes for methanol electroreforming. Applied Catalysis B: Environmental, 2018, 237, 811-816.	10.8	23
35	Impact of acid treatment of CuO-CeO2 catalysts on the preferential oxidation of CO reaction. Catalysis Communications, 2018, 115, 68-72.	1.6	17
36	Treatment of low-strength municipal wastewater containing phenanthrene using activated sludge and biofilm process. Desalination and Water Treatment, 2016, 57, 12047-12057.	1.0	12

#	Article	IF	CITATIONS
37	Studying the Formation of Biofilms on Supports with Different Polarity and Their Efficiency to Treat Wastewater. Journal of Chemistry, 2015, 2015, 1-7.	0.9	10
38	Effect of tungsten deposition method on K-modified NiW/γ-Al2O3 as sulphur-tolerant water–gas shift reaction catalyst. Applied Catalysis A: General, 2015, 506, 14-24.	2.2	5
39	Effect of TiO 2 Loading on Pt-Ru Catalysts During Alcohol Electrooxidation. Electrochimica Acta, 2015, 179, 578-587.	2.6	22
40	Structure of Co(II) Species Formed on the Surface of γ-Alumina Upon Interfacial Deposition. Open Catalysis Journal, 2014, 7, 8-17.	0.9	1
41	Hydrodesulfurization catalyst bodies with various Co and Mo profiles. Applied Catalysis A: General, 2011, 399, 211-220.	2.2	13
42	Effect of ammonoxidation on lignite properties. Environmental Chemistry Letters, 2010, 8, 373-380.	8.3	4
43	\hat{I}^3 -Alumina-supported [60]fullerene catalysts: Synthesis, properties and applications in the photooxidation of alkenes. Journal of Molecular Catalysis A, 2010, 316, 65-74.	4.8	25
44	Development of [60] fullerene supported on silica catalysts for the photo-oxidation of alkenes. Applied Catalysis A: General, 2010, 372, 16-25.	2.2	21
45	CoMo/Al2O3-SiO2 catalysts prepared by co-equilibrium deposition filtration: Characterization and catalytic behavior for the hydrodesulphurization of thiophene. Applied Catalysis B: Environmental, 2010, 96, 496-507.	10.8	34
46	Preparation and characterization of [60] fullerene nanoparticles supported on titania used as a photocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349, 189-194.	2.3	49
47	Modification of the preparation procedure for increasing the hydrodesulfurisation activity of the CoMo/Î ³ -alumina catalysts. Catalysis Today, 2007, 127, 85-91.	2.2	18
48	The influence of the preparation method and the Co loading on the structure and activity of cobalt oxide/γ-alumina catalysts for NO reduction by propene. Journal of Colloid and Interface Science, 2006, 295, 165-172.	5.0	25
49	Cobalt oxide/γ-alumina catalysts prepared by equilibrium deposition filtration: The influence of the initial cobalt concentration on the structure of the oxide phase and the activity for complete benzene oxidation. Applied Catalysis A: General, 2005, 288, 1-9.	2.2	37
50	Influence of the preparation method on the structure–activity of cobalt oxide catalysts supported on alumina for complete benzene oxidation. Applied Catalysis B: Environmental, 2005, 57, 299-312.	10.8	94
51	Kinetics of Adsorption of the Cobalt Ions on the "Electrolytic Solution/γ-Alumina―Interface. Journal of Physical Chemistry B, 2005, 109, 4599-4607.	1.2	25
52	[60]Fullerene Supported on Silica and γ-Alumina Sensitized Photooxidation of Olefins: Chemical Evidence for Singlet Oxygen and Electron Transfer Mechanism. Synlett, 2004, 2004, 971-974.	1.0	0
53	Adsorption of cobalt species on the interface, which is developed between aqueous solution and metal oxides used for the preparation of supported catalysts: a critical review. Advances in Colloid and Interface Science, 2004, 110, 97-120.	7.0	73
54	Adsorption of Cobalt Ions on the "Electrolytic Solution/Ĵ³-Alumina―Interface Studied by Diffuse Reflectance Spectroscopy (DRS). Langmuir, 2004, 20, 10542-10550.	1.6	66

#	Article	IF	CITATIONS
55	Fullerene C60 Supported on Silica and γ-Alumina Catalyzed Photooxidations of Alkenes. Catalysis Letters, 2003, 89, 269-273.	1.4	15
56	Potentiometric Mass Titrations:Â Experimental and Theoretical Establishment of a New Technique for Determining the Point of Zero Charge (PZC) of Metal (Hydr)Oxides. Journal of Physical Chemistry B, 2003, 107, 9441-9451.	1.2	228
57	Cobalt Oxide Supported γ-Alumina Catalyst with Very High Active Surface Area Prepared by Equilibrium Deposition Filtration. Langmuir, 2002, 18, 417-422.	1.6	58
58	Potentiometric mass titrations: a quick scan for determining the point of zero charge. Chemical Communications, 2002, , 1980-1981.	2.2	67
59	On the synergy between tungsten and molybdenum in the W-incorporated CoMo/γ-Al2O3 hydrodesulfurization catalysts. Applied Catalysis A: General, 2001, 217, 287-293.	2.2	18