
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1916677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gas chromatography mass spectrometry–based metabolite profiling in plants. Nature Protocols, 2006, 1, 387-396.	5.5	1,808
2	GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics, 2005, 21, 1635-1638.	1.8	1,247
3	Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport. Science, 2012, 335, 207-211.	6.0	1,085
4	Metabolic Profiling Allows Comprehensive Phenotyping of Genetically or Environmentally Modified Plant Systems. Plant Cell, 2001, 13, 11-29.	3.1	984
5	Not just a circle: flux modes in the plant TCA cycle. Trends in Plant Science, 2010, 15, 462-470.	4.3	713
6	Metabolite profiling: from diagnostics to systems biology. Nature Reviews Molecular Cell Biology, 2004, 5, 763-769.	16.1	711
7	Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 2006, 24, 447-454.	9.4	707
8	The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 2012, 69, 3225-3243.	2.4	680
9	The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiology and Biochemistry, 2013, 72, 21-34.	2.8	637
10	Metabolic and Signaling Aspects Underpinning the Regulation of Plant Carbon Nitrogen Interactions. Molecular Plant, 2010, 3, 973-996.	3.9	616
11	Rewiring of the Fruit Metabolome in Tomato Breeding. Cell, 2018, 172, 249-261.e12.	13.5	606
12	GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters, 2005, 579, 1332-1337.	1.3	596
13	Highway or byway: the metabolic role of the GABA shunt in plants. Trends in Plant Science, 2008, 13, 14-19.	4.3	583
14	<scp>M</scp> ercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant, Cell and Environment, 2014, 37, 1250-1258.	2.8	575
15	Photorespiration: players, partners and origin. Trends in Plant Science, 2010, 15, 330-336.	4.3	540
16	On the origins of nitric oxide. Trends in Plant Science, 2011, 16, 160-168.	4.3	528
17	<i>JUNGBRUNNEN1</i> , a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 482-506.	3.1	512
18	Metabolic priming by a secreted fungal effector. Nature, 2011, 478, 395-398.	13.7	509

#	Article	IF	CITATIONS
19	Starch as a major integrator in the regulation of plant growth. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10348-10353.	3.3	467
20	Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions. Science, 2004, 305, 1786-1789.	6.0	452
21	Metabolomics-assisted breeding: a viable option for crop improvement?. Trends in Genetics, 2009, 25, 39-48.	2.9	451
22	Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior. Plant Physiology, 2006, 142, 1380-1396.	2.3	432
23	Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, 2021, 18, 747-756.	9.0	403
24	The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 2014, 46, 1034-1038.	9.4	391
25	Arabidopsis Seed Development and Germination Is Associated with Temporally Distinct Metabolic Switches. Plant Physiology, 2006, 142, 839-854.	2.3	387
26	Plant metabolomics: towards biological function and mechanism. Trends in Plant Science, 2006, 11, 508-516.	4.3	370
27	Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8287-8292.	3.3	367
28	Protein degradation – an alternative respiratory substrate for stressed plants. Trends in Plant Science, 2011, 16, 489-498.	4.3	367
29	Enzymes of Glycolysis Are Functionally Associated with the Mitochondrion in Arabidopsis Cells. Plant Cell, 2003, 15, 2140-2151.	3.1	345
30	Enhanced Photosynthetic Performance and Growth as a Consequence of Decreasing Mitochondrial Malate Dehydrogenase Activity in Transgenic Tomato Plants. Plant Physiology, 2005, 137, 611-622.	2.3	335
31	Metabolic Profiling of Transgenic Tomato Plants Overexpressing Hexokinase Reveals That the Influence of Hexose Phosphorylation Diminishes during Fruit Development. Plant Physiology, 2003, 133, 84-99.	2.3	331
32	Molecular regulation of seed and fruit set. Trends in Plant Science, 2012, 17, 656-665.	4.3	331
33	Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. Journal of Experimental Botany, 2017, 68, 4013-4028.	2.4	328
34	Recommendations for Reporting Metabolite Data. Plant Cell, 2011, 23, 2477-2482.	3.1	326
35	Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2655-62.	3.3	325
36	Transcriptome and Metabolite Profiling Show That APETALA2a Is a Major Regulator of Tomato Fruit Ripening Â. Plant Cell, 2011, 23, 923-941.	3.1	324

#	Article	IF	CITATIONS
37	PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics, 2006, 7, 535.	1.2	309
38	Metabolic regulation underlying tomato fruit development. Journal of Experimental Botany, 2006, 57, 1883-1897.	2.4	308
39	Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (<i>nor, rin</i>) and Ethylene Receptor (<i>Nr</i>) Mutants Reveals Novel Regulatory Interactions Â. Plant Physiology, 2011, 157, 405-425.	2.3	303
40	Metabolic Fluxes in an Illuminated <i>Arabidopsis</i> Rosette Â. Plant Cell, 2013, 25, 694-714.	3.1	303
41	Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nature Communications, 2015, 6, 8635.	5.8	303
42	PlaNet: Combined Sequence and Expression Comparisons across Plant Networks Derived from Seven Species Â. Plant Cell, 2011, 23, 895-910.	3.1	297
43	Identification of the 2-Hydroxyglutarate and Isovaleryl-CoA Dehydrogenases as Alternative Electron Donors Linking Lysine Catabolism to the Electron Transport Chain of <i>Arabidopsis</i> Mitochondria Â. Plant Cell, 2010, 22, 1549-1563.	3.1	296
44	Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. Plant Journal, 2007, 50, 1093-1106.	2.8	294
45	The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nature Communications, 2018, 9, 2136.	5.8	290
46	Shikimate and Phenylalanine Biosynthesis in the Green Lineage. Frontiers in Plant Science, 2013, 4, 62.	1.7	288
47	Analysis of PRODUCTION OF FLAVONOL GLYCOSIDESâ€dependent flavonol glycoside accumulation in <i>Arabidopsis thaliana</i> plants reveals MYB11â€, MYB12―and MYB111â€independent flavonol glycoside accumulation. New Phytologist, 2010, 188, 985-1000.	3.5	285
48	Comprehensive Dissection of Spatiotemporal Metabolic Shifts in Primary, Secondary, and Lipid Metabolism during Developmental Senescence in Arabidopsis Â. Plant Physiology, 2013, 162, 1290-1310.	2.3	278
49	Reconfiguration of the Achene and Receptacle Metabolic Networks during Strawberry Fruit Development Â. Plant Physiology, 2008, 148, 730-750.	2.3	276
50	Developmental Stage Specificity and the Role of Mitochondrial Metabolism in the Response of Arabidopsis Leaves to Prolonged Mild Osmotic Stress Â. Plant Physiology, 2009, 152, 226-244.	2.3	269
51	Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell and Environment, 2012, 35, 1-21.	2.8	267
52	De Novo Domestication: An Alternative Route toward New Crops for the Future. Molecular Plant, 2019, 12, 615-631.	3.9	267
53	AtABCG29 Is a Monolignol Transporter Involved in Lignin Biosynthesis. Current Biology, 2012, 22, 1207-1212.	1.8	265
54	Seed desiccation: a bridge between maturation and germination. Trends in Plant Science, 2010, 15, 211-218.	4.3	262

#	Article	lF	CITATIONS
55	Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling. Plant Cell, 2009, 21, 1428-1452.	3.1	258
56	Molecular and Biochemical Triggers of Potato Tuber Development. Plant Physiology, 2001, 127, 1459-1465.	2.3	256
57	Metabolic Profiling during Peach Fruit Development and Ripening Reveals the Metabolic Networks That Underpin Each Developmental Stage Â. Plant Physiology, 2011, 157, 1696-1710.	2.3	254
58	The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants. Annual Review of Plant Biology, 2016, 67, 153-178.	8.6	254
59	Highâ€density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant Journal, 2011, 67, 869-884.	2.8	251
60	Metabolic and Phenotypic Responses of Greenhouse-Grown Maize Hybrids to Experimentally Controlled Drought Stress. Molecular Plant, 2012, 5, 401-417.	3.9	251
61	The Structure and Function of Major Plant Metabolite Modifications. Molecular Plant, 2019, 12, 899-919.	3.9	250
62	Glycolytic Enzymes Associate Dynamically with Mitochondria in Response to Respiratory Demand and Support Substrate Channeling. Plant Cell, 2007, 19, 3723-3738.	3.1	249
63	Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. Journal of Experimental Botany, 2004, 56, 297-307.	2.4	240
64	Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant Journal, 2006, 45, 180-192.	2.8	234
65	Metabolite profiles of maize leaves in drought, heat and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiology, 2015, 169, pp.01164.2015.	2.3	233
66	Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nature Communications, 2017, 8, 1975.	5.8	233
67	The evolution of phenylpropanoid metabolism in the green lineage. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 123-152.	2.3	228
68	Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nature Biotechnology, 2014, 32, 1158-1165.	9.4	228
69	Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nature Plants, 2017, 3, 696-703.	4.7	228
70	Malate Plays a Crucial Role in Starch Metabolism, Ripening, and Soluble Solid Content of Tomato Fruit and Affects Postharvest Softening Â. Plant Cell, 2011, 23, 162-184.	3.1	227
71	Mitochondrial uncoupling protein is required for efficient photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19587-19592.	3.3	226
72	RNA Interference of LIN5 in Tomato Confirms Its Role in Controlling Brix Content, Uncovers the Influence of Sugars on the Levels of Fruit Hormones, and Demonstrates the Importance of Sucrose Cleavage for Normal Fruit Development and Fertility Â. Plant Physiology, 2009, 150, 1204-1218.	2.3	226

#	Article	IF	CITATIONS
73	Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta, 2001, 212, 250-263.	1.6	223
74	Antisense Inhibition of the Iron-Sulphur Subunit of Succinate Dehydrogenase Enhances Photosynthesis and Growth in Tomato via an Organic Acid–Mediated Effect on Stomatal Aperture Â. Plant Cell, 2011, 23, 600-627.	3.1	221
75	Natural genetic variation for improving crop quality. Current Opinion in Plant Biology, 2006, 9, 196-202.	3.5	214
76	Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant Journal, 2011, 66, 161-181.	2.8	212
77	Vitamin Deficiencies in Humans: Can Plant Science Help?. Plant Cell, 2012, 24, 395-414.	3.1	212
78	The Critical Role of Arabidopsis Electron-Transfer Flavoprotein:Ubiquinone Oxidoreductase during Dark-Induced Starvation. Plant Cell, 2005, 17, 2587-2600.	3.1	211
79	Reduced Expression of Aconitase Results in an Enhanced Rate of Photosynthesis and Marked Shifts in Carbon Partitioning in Illuminated Leaves of Wild Species Tomato. Plant Physiology, 2003, 133, 1322-1335.	2.3	210
80	Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Scientific Reports, 2016, 6, 34027.	1.6	209
81	Mode of Inheritance of Primary Metabolic Traits in Tomato Â. Plant Cell, 2008, 20, 509-523.	3.1	208
82	Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2013, 73, 897-909.	2.8	205
83	Exploring the Diversity of Plant Metabolism. Trends in Plant Science, 2019, 24, 83-98.	4.3	203
84	Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nature Protocols, 2010, 5, 1210-1227.	5.5	202
85	Adjustment of growth and central metabolism to a mild but sustained nitrogenâ€limitation in <i>Arabidopsis</i> . Plant, Cell and Environment, 2009, 32, 300-318.	2.8	201
86	Molecular regulation of fruit ripening. Frontiers in Plant Science, 2013, 4, 198.	1.7	200
87	A Cytosolic Pathway for the Conversion of Hydroxypyruvate to Glycerate during Photorespiration in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 2848-2859.	3.1	193
88	Tissue- and Cell-Type Specific Transcriptome Profiling of Expanding Tomato Fruit Provides Insights into Metabolic and Regulatory Specialization and Cuticle Formation Â. Plant Cell, 2011, 23, 3893-3910.	3.1	193
89	The Unprecedented Versatility of the Plant‎ Thioredoxin System. Trends in Plant Science, 2017, 22, 249-262.	4.3	192
90	De Novo Assembly of a New <i>Solanum pennellii</i> Accession Using Nanopore Sequencing. Plant Cell, 2017, 29, 2336-2348.	3.1	192

#	Article	IF	CITATIONS
91	The Spatial Organization of Metabolism Within the Plant Cell. Annual Review of Plant Biology, 2013, 64, 723-746.	8.6	191
92	Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nature Communications, 2018, 9, 4680.	5.8	189
93	Revisiting the Basal Role of ABA – Roles Outside of Stress. Trends in Plant Science, 2019, 24, 625-635.	4.3	189
94	Identification and Mode of Inheritance of Quantitative Trait Loci for Secondary Metabolite Abundance in Tomato. Plant Cell, 2015, 27, 485-512.	3.1	188
95	Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits Â. Plant Physiology, 2014, 165, 1120-1132.	2.3	187
96	Silencing of the Mitochondrial Ascorbate Synthesizing Enzyme <scp>l</scp> -Galactono-1,4-Lactone Dehydrogenase Affects Plant and Fruit Development in Tomato. Plant Physiology, 2007, 145, 1408-1422.	2.3	184
97	Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nature Communications, 2014, 5, 3027.	5.8	179
98	Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proceedings of the United States of America, 2015, 112, E1392-400.	3.3	179
99	Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nature Biotechnology, 2002, 20, 1256-1260.	9.4	176
100	Dynamic Plastid Redox Signals Integrate Gene Expression and Metabolism to Induce Distinct Metabolic States in Photosynthetic Acclimation in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 2715-2732.	3.1	176
101	On the Discordance of Metabolomics with Proteomics and Transcriptomics: Coping with Increasing Complexity in Logic, Chemistry, and Network Interactions Scientific Correspondence. Plant Physiology, 2012, 158, 1139-1145.	2.3	176
102	Integrative Comparative Analyses of Transcript and Metabolite Profiles from Pepper and Tomato Ripening and Development Stages Uncovers Species-Specific Patterns of Network Regulatory Behavior Â. Plant Physiology, 2012, 159, 1713-1729.	2.3	174
103	High-Resolution Metabolic Phenotyping of Genetically and Environmentally Diverse Potato Tuber Systems. Identification of Phenocopies. Plant Physiology, 2001, 127, 749-764.	2.3	173
104	Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cellular and Molecular Life Sciences, 2013, 70, 689-709.	2.4	168
105	Global Analysis of the Role of Autophagy in Cellular Metabolism and Energy Homeostasis in Arabidopsis Seedlings under Carbon Starvation. Plant Cell, 2015, 27, 306-322.	3.1	166
106	Metabolomics 20Âyears on: what have we learned and what hurdles remain?. Plant Journal, 2018, 94, 933-942.	2.8	166
107	Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant Journal, 2017, 91, 518-533.	2.8	156
108	The Penium margaritaceum Genome: Hallmarks of the Origins of Land Plants. Cell, 2020, 181, 1097-1111.e12.	13.5	153

#	Article	IF	CITATIONS
109	Reduced Expression of Succinyl-Coenzyme A Ligase Can Be Compensated for by Up-Regulation of the <i>γ </i> -Aminobutyrate Shunt in Illuminated Tomato Leaves. Plant Physiology, 2007, 145, 626-639.	2.3	151
110	Molecular Identification and Functional Characterization of Arabidopsis thaliana Mitochondrial and Chloroplastic NAD+ Carrier Proteins. Journal of Biological Chemistry, 2009, 284, 31249-31259.	1.6	151
111	Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening But Plays a Considerable Role in Seed Development À Â. Plant Physiology, 2011, 157, 1650-1663.	2.3	150
112	Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population. Plant Cell, 2015, 27, 1839-1856.	3.1	149
113	High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize. Plant Cell, 2020, 32, 1397-1413.	3.1	148
114	Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites, 2020, 10, 37.	1.3	147
115	Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nature Communications, 2016, 7, 12399.	5.8	145
116	Antisense inhibition of plastidial phosphoglucomutase provides compelling evidence that potato tuber amyloplasts import carbon from the cytosol in the form of glucose-6-phosphate. Plant Journal, 2000, 23, 43-53.	2.8	144
117	Glycine decarboxylase controls photosynthesis and plant growth. FEBS Letters, 2012, 586, 3692-3697.	1.3	144
118	Metabolic Control of Redox and Redox Control of Metabolism in Plants. Antioxidants and Redox Signaling, 2014, 21, 1389-1421.	2.5	143
119	Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nature Methods, 2021, 18, 733-746.	9.0	143
120	Relationships of Leaf Net Photosynthesis, Stomatal Conductance, and Mesophyll Conductance to Primary Metabolism: A Multispecies Meta-Analysis Approach. Plant Physiology, 2016, 171, 265-279.	2.3	142
121	Regulation of the mitochondrial tricarboxylic acid cycle. Current Opinion in Plant Biology, 2013, 16, 335-343.	3.5	141
122	<i>PLGG1</i> , a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3185-3190.	3.3	141
123	The NAC Transcription Factor SINAP2 Regulates Leaf Senescence and Fruit Yield in Tomato. Plant Physiology, 2018, 177, 1286-1302.	2.3	140
124	Mitochondrial Dihydrolipoyl Dehydrogenase Activity Shapes Photosynthesis and Photorespiration of <i>Arabidopsis thaliana</i> . Plant Cell, 2015, 27, 1968-1984.	3.1	139
125	Altering Trehalose-6-Phosphate Content in Transgenic Potato Tubers Affects Tuber Growth and Alters Responsiveness to Hormones during Sprouting Á Â. Plant Physiology, 2011, 156, 1754-1771.	2.3	138
126	The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry, 2020, 174, 112347.	1.4	138

#	Article	IF	CITATIONS
127	Conservation and diversification of flavonoid metabolism in the plant kingdom. Current Opinion in Plant Biology, 2020, 55, 100-108.	3.5	137
128	A Bypass of Sucrose Synthase Leads to Low Internal Oxygen and Impaired Metabolic Performance in Growing Potato Tubers. Plant Physiology, 2003, 132, 2058-2072.	2.3	135
129	Fruit Carbohydrate Metabolism in an Introgression Line of Tomato with Increased Fruit Soluble Solids. Plant and Cell Physiology, 2005, 46, 425-437.	1.5	135
130	Diurnal Changes of Polysome Loading Track Sucrose Content in the Rosette of Wild-Type Arabidopsis and the Starchless <i>pgm</i> Mutant Â. Plant Physiology, 2013, 162, 1246-1265.	2.3	133
131	Quantifying Protein Synthesis and Degradation in Arabidopsis by Dynamic ¹³ CO ₂ Labeling and Analysis of Enrichment in Individual Amino Acids in Their Free Pools and in Protein. Plant Physiology, 2015, 168, 74-93.	2.3	132
132	The Photorespiratory Metabolite 2-Phosphoglycolate Regulates Photosynthesis and Starch Accumulation in Arabidopsis. Plant Cell, 2017, 29, 2537-2551.	3.1	132
133	Network Analysis of Enzyme Activities and Metabolite Levels and Their Relationship to Biomass in a Large Panel of <i>Arabidopsis</i> Accessions Â. Plant Cell, 2010, 22, 2872-2893.	3.1	131
134	Cytosolic pyruvate,orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant Journal, 2010, 62, 641-652.	2.8	129
135	Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Scientific Reports, 2014, 4, 5067.	1.6	129
136	The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant Journal, 2006, 47, 751-760.	2.8	128
137	Sulfur deficiency–induced repressor proteins optimize glucosinolate biosynthesis in plants. Science Advances, 2016, 2, e1601087.	4.7	127
138	Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. Journal of Experimental Botany, 2016, 67, 2977-2988.	2.4	127
139	Natural variation in flavonol and anthocyanin metabolism during cold acclimation in <scp><i>A</i></scp> <i>rabidopsis thaliana</i> accessions. Plant, Cell and Environment, 2015, 38, 1658-1672.	2.8	126
140	Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. Journal of Experimental Botany, 2012, 63, 1445-1459.	2.4	125
141	Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism. Journal of Experimental Botany, 2013, 64, 5049-5063.	2.4	124
142	Opportunities for improving leaf water use efficiency under climate change conditions. Plant Science, 2014, 226, 108-119.	1.7	124
143	Next-generation strategies for understanding and influencing source–sink relations in crop plants. Current Opinion in Plant Biology, 2018, 43, 63-70.	3.5	119
144	Kinetics of labelling of organic and amino acids in potato tubers by gas chromatography-mass spectrometry following incubation in13C labelled isotopes. Plant Journal, 2004, 39, 668-679.	2.8	118

#	Article	IF	CITATIONS
145	Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant Journal, 2011, 68, 999-1013.	2.8	118
146	The Genetics of Plant Metabolism. Annual Review of Genetics, 2017, 51, 287-310.	3.2	118
147	An In Vivo Perspective of the Role(s) of the Alternative Oxidase Pathway. Trends in Plant Science, 2018, 23, 206-219.	4.3	118
148	Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis. ELife, 2019, 8, .	2.8	118
149	Nonsupervised Construction and Application of Mass Spectral and Retention Time Index Libraries From Time-of-Flight Gas Chromatography-Mass Spectrometry Metabolite Profiles. Methods in Molecular Biology, 2007, 358, 19-38.	0.4	116
150	The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. Journal of Experimental Botany, 2013, 64, 553-568.	2.4	116
151	Mapping the Arabidopsis Metabolic Landscape by Untargeted Metabolomics at Different Environmental Conditions. Molecular Plant, 2018, 11, 118-134.	3.9	116
152	Conversion of MapMan to Allow the Analysis of Transcript Data from Solanaceous Species: Effects of Genetic and Environmental Alterations in Energy Metabolism in the Leaf. Plant Molecular Biology, 2006, 60, 773-792.	2.0	115
153	Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations. PLoS Genetics, 2012, 8, e1002612.	1.5	115
154	Complete Mitochondrial Complex I Deficiency Induces an Up-Regulation of Respiratory Fluxes That Is Abolished by Traces of Functional Complex I. Plant Physiology, 2015, 168, 1537-1549.	2.3	113
155	Induction of the AOX1D Isoform of Alternative Oxidase in A. thaliana T-DNA Insertion Lines Lacking Isoform AOX1A Is Insufficient to Optimize Photosynthesis when Treated with Antimycin A. Molecular Plant, 2009, 2, 284-297.	3.9	112
156	On the role of the tricarboxylic acid cycle in plant productivity. Journal of Integrative Plant Biology, 2018, 60, 1199-1216.	4.1	112
157	Targeted Enhancement of Glutamate-to-Î ³ -Aminobutyrate Conversion in Arabidopsis Seeds Affects Carbon-Nitrogen Balance and Storage Reserves in a Development-Dependent Manner Â. Plant Physiology, 2011, 157, 1026-1042.	2.3	111
158	Ethylene is involved in strawberry fruit ripening in an organ-specific manner. Journal of Experimental Botany, 2013, 64, 4421-4439.	2.4	111
159	Gibberellin biosynthesis and signalling during development of the strawberry receptacle. New Phytologist, 2011, 191, 376-390.	3.5	110
160	Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375, eabg7985.	6.0	110
161	Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications, 2020, 11, 3719.	5.8	108
162	MicroTom Metabolic Network: Rewiring Tomato Metabolic Regulatory Network throughout the Growth Cycle. Molecular Plant, 2020, 13, 1203-1218.	3.9	107

#	Article	IF	CITATIONS
163	Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nature Plants, 2020, 6, 55-66.	4.7	107
164	Vitamin B1 biosynthesis in plants requires the essential iron–sulfur cluster protein, THIC. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19637-19642.	3.3	106
165	The <i>Arabidopsis onset of leaf death5</i> Mutation of Quinolinate Synthase Affects Nicotinamide Adenine Dinucleotide Biosynthesis and Causes Early Ageing. Plant Cell, 2008, 20, 2909-2925.	3.1	106
166	Genome-wide Dissection of Co-selected UV-B Responsive Pathways in the UV-B Adaptation of Qingke. Molecular Plant, 2020, 13, 112-127.	3.9	106
167	Alteration of Organic Acid Metabolism in Arabidopsis Overexpressing the Maize C4 NADP-Malic Enzyme Causes Accelerated Senescence during Extended Darkness. Plant Physiology, 2007, 145, 640-652.	2.3	105
168	Targeting Mitochondrial Metabolism and Machinery as a Means to Enhance Photosynthesis. Plant Physiology, 2011, 155, 101-107.	2.3	105
169	Regulation of Primary Metabolism in Response to Low Oxygen Availability as Revealed by Carbon and Nitrogen Isotope Redistribution. Plant Physiology, 2016, 170, 43-56.	2.3	105
170	Heard it through the grapevine? ABA and sugar cross-talk: the ASR story. Trends in Plant Science, 2004, 9, 57-59.	4.3	104
171	Metabolite pools and carbon flow during C ₄ photosynthesis in maize: ¹³ CO ₂ labeling kinetics and cell type fractionation. Journal of Experimental Botany, 2017, 68, 283-298.	2.4	104
172	Decreased Nucleotide and Expression Diversity and Modified Coexpression Patterns Characterize Domestication in the Common Bean. Plant Cell, 2014, 26, 1901-1912.	3.1	103
173	The life of plant mitochondrial complex I. Mitochondrion, 2014, 19, 295-313.	1.6	103
174	Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nature Communications, 2017, 8, 15212.	5.8	103
175	A Topological Map of the Compartmentalized Arabidopsis thaliana Leaf Metabolome. PLoS ONE, 2011, 6, e17806.	1.1	101
176	Evolutionary Metabolomics Reveals Domestication-Associated Changes in Tetraploid Wheat Kernels. Molecular Biology and Evolution, 2016, 33, 1740-1753.	3.5	99
177	Orchestration of Thiamin Biosynthesis and Central Metabolism by Combined Action of the Thiamin Pyrophosphate Riboswitch and the Circadian Clock in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 288-307.	3.1	98
178	Autophagy Deficiency Compromises Alternative Pathways of Respiration following Energy Deprivation in <i>Arabidopsis thaliana</i> . Plant Physiology, 2017, 175, 62-76.	2.3	98
179	Identification of Genes in the Phenylalanine Metabolic Pathway by Ectopic Expression of a MYB Transcription Factor in Tomato Fruit. Plant Cell, 2011, 23, 2738-2753.	3.1	97
180	Serine Acts as a Metabolic Signal for the Transcriptional Control of Photorespiration-Related Genes in Arabidopsis Â. Plant Physiology, 2013, 162, 379-389.	2.3	97

#	Article	IF	CITATIONS
181	Robin: An Intuitive Wizard Application for R-Based Expression Microarray Quality Assessment and Analysis Â. Plant Physiology, 2010, 153, 642-651.	2.3	96
182	Tobacco guard cells fix <scp>CO</scp> ₂ by both <scp>Rubisco</scp> and <scp>PEP</scp> case while sucrose acts as a substrate during lightâ€induced stomatal opening. Plant, Cell and Environment, 2015, 38, 2353-2371.	2.8	95
183	Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment. Nature Communications, 2015, 6, 6659.	5.8	95
184	The Role of SWI/SNF Chromatin Remodeling Complexes in Hormone Crosstalk. Trends in Plant Science, 2016, 21, 594-608.	4.3	95
185	The NAC transcription factor FaRIF controls fruit ripening in strawberry. Plant Cell, 2021, 33, 1574-1593.	3.1	95
186	Metaboliteâ€based genomeâ€wide association study enables dissection of the flavonoid decoration pathway of wheat kernels. Plant Biotechnology Journal, 2020, 18, 1722-1735.	4.1	94
187	Combined Transcript and Metabolite Profiling of Arabidopsis Leaves Reveals Fundamental Effects of the Thiol-Disulfide Status on Plant Metabolism Â. Plant Physiology, 2006, 141, 412-422.	2.3	93
188	Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and <i>Solanum pennellii</i> Â Â Â. Plant Physiology, 2010, 153, 80-98.	2.3	92
189	Toward the Storage Metabolome: Profiling the Barley Vacuole Â. Plant Physiology, 2011, 157, 1469-1482.	2.3	92
190	On the regulation and function of secondary metabolism during fruit development and ripening. Journal of Experimental Botany, 2013, 65, 4599-4611.	2.4	92
191	The contribution of plastidial phosphoglucomutase to the control of starch synthesis within the potato tuber. Planta, 2001, 213, 418-426.	1.6	91
192	2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis. Frontiers in Plant Science, 2014, 5, 552.	1.7	91
193	Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered CO 2 Availability. Molecular Plant, 2017, 10, 47-61.	3.9	91
194	Roles of sucrose in guard cell regulation. New Phytologist, 2016, 211, 809-818.	3.5	90
195	Floral Metabolism of Sugars and Amino Acids: Implications for Pollinators' Preferences and Seed and Fruit Set. Plant Physiology, 2017, 175, 1510-1524.	2.3	90
196	Flowers and climate change: a metabolic perspective. New Phytologist, 2019, 224, 1425-1441.	3.5	90
197	Deciphering Transcriptional and Metabolic Networks Associated with Lysine Metabolism during Arabidopsis Seed Development Â. Plant Physiology, 2009, 151, 2058-2072.	2.3	89
198	Antisense Inhibition of the 2-Oxoglutarate Dehydrogenase Complex in Tomato Demonstrates Its Importance for Plant Respiration and during Leaf Senescence and Fruit Maturation. Plant Cell, 2012, 24, 2328-2351.	3.1	88

#	Article	IF	CITATIONS
199	High-to-Low CO2 Acclimation Reveals Plasticity of the Photorespiratory Pathway and Indicates Regulatory Links to Cellular Metabolism of Arabidopsis. PLoS ONE, 2012, 7, e42809.	1.1	88
200	Impact of the Carbon and Nitrogen Supply on Relationships and Connectivity between Metabolism and Biomass in a Broad Panel of Arabidopsis Accessions Â. Plant Physiology, 2013, 162, 347-363.	2.3	87
201	Inhibition of de Novo Pyrimidine Synthesis in Growing Potato Tubers Leads to a Compensatory Stimulation of the Pyrimidine Salvage Pathway and a Subsequent Increase in Biosynthetic Performance. Plant Cell, 2005, 17, 2077-2088.	3.1	86
202	Decreased Mitochondrial Activities of Malate Dehydrogenase and Fumarase in Tomato Lead to Altered Root Growth and Architecture via Diverse Mechanisms Â. Plant Physiology, 2009, 149, 653-669.	2.3	85
203	Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits. Molecular Plant, 2012, 5, 366-375.	3.9	85
204	A Highly Efficient Agrobacterium-Mediated Method for Transient Gene Expression and Functional Studies in Multiple Plant Species. Plant Communications, 2020, 1, 100028.	3.6	85
205	The Role of Abscisic Acid Signaling in Maintaining the Metabolic Balance Required for Arabidopsis Growth under Nonstress Conditions. Plant Cell, 2019, 31, 84-105.	3.1	84
206	Transcriptional regulation of tocopherol biosynthesis in tomato. Plant Molecular Biology, 2013, 81, 309-325.	2.0	83
207	The Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End Â. Plant Physiology, 2011, 155, 694-705.	2.3	82
208	Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates. Journal of Biological Chemistry, 2018, 293, 4213-4227.	1.6	81
209	The Extra-Pathway Interactome of the TCA Cycle: Expected and Unexpected Metabolic Interactions. Plant Physiology, 2018, 177, 966-979.	2.3	81
210	Manipulation of βâ€carotene levels in tomato fruits results in increased ABA content and extended shelf life. Plant Biotechnology Journal, 2020, 18, 1185-1199.	4.1	81
211	Two Arabidopsis Threonine Aldolases Are Nonredundant and Compete with Threonine Deaminase for a Common Substrate Pool. Plant Cell, 2007, 18, 3564-3575.	3.1	80
212	Characterization of the Branched-Chain Amino Acid Aminotransferase Enzyme Family in Tomato Â. Plant Physiology, 2010, 153, 925-936.	2.3	80
213	The Influence of Fruit Load on the Tomato Pericarp Metabolome in a <i>Solanum chmielewskii</i> Introgression Line Population. Plant Physiology, 2010, 154, 1128-1142.	2.3	80
214	The Phosphorylated Pathway of Serine Biosynthesis Is Essential Both for Male Gametophyte and Embryo Development and for Root Growth in Arabidopsis. Plant Cell, 2013, 25, 2084-2101.	3.1	80
215	The arginine decarboxylase gene <i><scp>ADC</scp>1</i> , associated to the putrescine pathway, plays an important role in potato coldâ€acclimated freezing tolerance as revealed by transcriptome and metabolome analyses. Plant Journal, 2018, 96, 1283-1298.	2.8	80
216	<i><scp>TIME FOR COFFEE</scp></i> is an essential component in the maintenance of metabolic homeostasis in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2013, 76, 188-200.	2.8	79

#	Article	IF	CITATIONS
217	NAD-Dependent Isocitrate Dehydrogenase Mutants of Arabidopsis Suggest the Enzyme Is Not Limiting for Nitrogen Assimilation. Plant Physiology, 2007, 144, 1546-1558.	2.3	78
218	ADP-Glucose Pyrophosphorylase-Deficient Pea Embryos Reveal Specific Transcriptional and Metabolic Changes of Carbon-Nitrogen Metabolism and Stress Responses A. Plant Physiology, 2009, 149, 395-411.	2.3	78
219	Engineering central metabolism – a grand challenge for plant biologists. Plant Journal, 2017, 90, 749-763.	2.8	78
220	Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nature Biotechnology, 2021, 39, 169-173.	9.4	78
221	Metabolons, enzyme–enzyme assemblies that mediate substrate channeling, and their roles in plant metabolism. Plant Communications, 2021, 2, 100081.	3.6	78
222	Integrating multi-omics data for crop improvement. Journal of Plant Physiology, 2021, 257, 153352.	1.6	78
223	Enhanced Photosynthesis and Growth in <i>atquac1</i> Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance. Plant Physiology, 2016, 170, 86-101.	2.3	77
224	Metabolism within the specialized guard cells of plants. New Phytologist, 2017, 216, 1018-1033.	3.5	77
225	The Plastidic Sugar Transporter pSuT Influences Flowering and Affects Cold Responses. Plant Physiology, 2019, 179, 569-587.	2.3	77
226	Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21796-21803.	3.3	77
227	Antisense repression of cytosolic phosphoglucomutase in potato (Solanum tuberosum) results in severe growth retardation, reduction in tuber number and altered carbon metabolism. Planta, 2002, 214, 510-520.	1.6	76
228	Fumarate: Multiple functions of a simple metabolite. Phytochemistry, 2011, 72, 838-843.	1.4	75
229	Resolution by recombination: breaking up Solanum pennellii introgressions. Trends in Plant Science, 2013, 18, 536-538.	4.3	74
230	The regulatory interplay between photorespiration and photosynthesis. Journal of Experimental Botany, 2016, 67, 2923-2929.	2.4	74
231	De Novo Amino Acid Biosynthesis in Potato Tubers Is Regulated by Sucrose Levels. Plant Physiology, 2003, 133, 683-692.	2.3	71
232	NAD ⁺ Biosynthesis and Signaling in Plants. Critical Reviews in Plant Sciences, 2018, 37, 259-307.	2.7	71
233	Functional Characterization of the Plastidial 3-Phosphoglycerate Dehydrogenase Family in Arabidopsis. Plant Physiology, 2013, 163, 1164-1178.	2.3	70
234	Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation. Expert Review of Proteomics, 2020, 17, 243-255.	1.3	70

#	Article	IF	CITATIONS
235	Pleiotropic physiological consequences of feedback-insensitive phenylalanine biosynthesis in Arabidopsis thaliana. Plant Journal, 2010, 63, 823-835.	2.8	69
236	Metabolomics analysis and metaboliteâ€agronomic trait associations using kernels of wheat (<i>Triticum aestivum</i>) recombinant inbred lines. Plant Journal, 2020, 103, 279-292.	2.8	69
237	Mild Reductions in Mitochondrial NAD-Dependent Isocitrate Dehydrogenase Activity Result in Altered Nitrate Assimilation and Pigmentation But Do Not Impact Growth. Molecular Plant, 2010, 3, 156-173.	3.9	68
238	The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. Plant Communications, 2020, 1, 100010.	3.6	68
239	Combined Use of Genome-Wide Association Data and Correlation Networks Unravels Key Regulators of Primary Metabolism in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006363.	1.5	67
240	Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6. Journal of Experimental Botany, 2016, 67, 1505-1517.	2.4	67
241	The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators. Trends in Plant Science, 2017, 22, 338-350.	4.3	67
242	Deficiency of a Plastidial Adenylate Kinase in Arabidopsis Results in Elevated Photosynthetic Amino Acid Biosynthesis and Enhanced Growth. Plant Physiology, 2005, 137, 70-82.	2.3	66
243	Genetic dissection of vitamin E biosynthesis in tomato. Journal of Experimental Botany, 2011, 62, 3781-3798.	2.4	66
244	Alteration of mitochondrial protein complexes in relation to metabolic regulation under short-term oxidative stress in Arabidopsis seedlings. Phytochemistry, 2011, 72, 1081-1091.	1.4	66
245	Downregulation of the δ-Subunit Reduces Mitochondrial ATP Synthase Levels, Alters Respiration, and Restricts Growth and Gametophyte Development in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2792-2811.	3.1	66
246	The complex role of mitochondrial metabolism in plant aluminum resistance. Trends in Plant Science, 2014, 19, 399-407.	4.3	66
247	Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis. Plant Physiology, 2015, 169, 1027-1041.	2.3	66
248	Metabolomics-Inspired Insight into Developmental, Environmental and Genetic Aspects of Tomato Fruit Chemical Composition and Quality: Fig. 1. Plant and Cell Physiology, 2015, 56, 1681-1696.	1.5	66
249	Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance. Nature Plants, 2020, 6, 1447-1454.	4.7	66
250	Transcription factor <scp>RD</scp> 26 is a key regulator of metabolic reprogramming during darkâ€induced senescence. New Phytologist, 2018, 218, 1543-1557.	3.5	65
251	Mass Spectrometryâ€Based Untargeted Plant Metabolomics. Current Protocols in Plant Biology, 2019, 4, e20100.	2.8	65
252	Identification of Conserved and Diverse Metabolic Shifts during Rice Grain Development. Scientific Reports, 2016, 6, 20942.	1.6	64

#	Article	IF	CITATIONS
253	Guard cellâ€specific upregulation of <i>sucrose synthase 3</i> reveals that the role of sucrose in stomatal function is primarily energetic. New Phytologist, 2016, 209, 1470-1483.	3.5	63
254	FamNet: A Framework to Identify Multiplied Modules Driving Pathway Expansion in Plants. Plant Physiology, 2016, 170, 1878-1894.	2.3	63
255	Quantitative Trait Loci Analysis Identifies a Prominent Gene Involved in the Production of Fatty Acid-Derived Flavor Volatiles in Tomato. Molecular Plant, 2018, 11, 1147-1165.	3.9	63
256	A Subsidiary Cell-Localized Glucose Transporter Promotes Stomatal Conductance and Photosynthesis. Plant Cell, 2019, 31, 1328-1343.	3.1	63
257	Central role of <i>Fa<scp>GAMYB</scp></i> in the transition of the strawberry receptacle from development to ripening. New Phytologist, 2015, 208, 482-496.	3.5	62
258	Ectopic expression of snapdragon transcription factors facilitates the identification of genes encoding enzymes of anthocyanin decoration in tomato. Plant Journal, 2015, 83, 686-704.	2.8	62
259	Metabolomic profiling in tomato reveals diel compositional changes in fruit affected by source–sink relationships. Journal of Experimental Botany, 2015, 66, 3391-3404.	2.4	62
260	Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing. Nature Protocols, 2016, 11, 2401-2418.	5.5	62
261	Combining Quantitative Genetics Approaches with Regulatory Network Analysis to Dissect the Complex Metabolism of the Maize Kernel. Plant Physiology, 2016, 170, 136-146.	2.3	62
262	Coordinating Sulfur Pools under Sulfate Deprivation. Trends in Plant Science, 2020, 25, 1227-1239.	4.3	62
263	A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress. International Journal of Molecular Sciences, 2020, 21, 474.	1.8	62
264	An <i>Orange Ripening</i> Mutant Links Plastid NAD(P)H Dehydrogenase Complex Activity to Central and Specialized Metabolism during Tomato Fruit Maturation Â. Plant Cell, 2010, 22, 1977-1997.	3.1	61
265	Integration of Genome-Scale Modeling and Transcript Profiling Reveals Metabolic Pathways Underlying Light and Temperature Acclimation in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 1197-1211.	3.1	61
266	Sucrose breakdown within guard cells provides substrates for glycolysis and glutamine biosynthesis during lightâ€induced stomatal opening. Plant Journal, 2018, 94, 583-594.	2.8	61
267	Virus-Induced Gene Silencing of Plastidial Soluble Inorganic Pyrophosphatase Impairs Essential Leaf Anabolic Pathways and Reduces Drought Stress Tolerance in <i>Nicotiana benthamiana</i> . Plant Physiology, 2010, 154, 55-66.	2.3	60
268	Metabolomicsâ€assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade. Journal of Integrative Plant Biology, 2014, 56, 864-875.	4.1	60
269	The apoplastic antioxidant system and altered cell wall dynamics influence mesophyll conductance and the rate of photosynthesis. Plant Journal, 2019, 99, 1031-1046.	2.8	60
270	Domestication of Crop Metabolomes: Desired and Unintended Consequences. Trends in Plant Science, 2021, 26, 650-661.	4.3	60

#	Article	IF	CITATIONS
271	Enhancing crop diversity for food security in the face of climate uncertainty. Plant Journal, 2022, 109, 402-414.	2.8	60
272	Flux profiling of photosynthetic carbon metabolism in intact plants. Nature Protocols, 2014, 9, 1803-1824.	5.5	59
273	On the metabolic interactions of (photo)respiration. Journal of Experimental Botany, 2016, 67, 3003-3014.	2.4	59
274	From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. GigaScience, 2017, 6, 1-20.	3.3	59
275	A MYB Triad Controls Primary and Phenylpropanoid Metabolites for Pollen Coat Patterning. Plant Physiology, 2019, 180, 87-108.	2.3	59
276	Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nature Communications, 2020, 11, 6184.	5.8	59
277	Dissecting the Subcellular Compartmentation of Proteins and Metabolites in Arabidopsis Leaves Using Non-aqueous Fractionation. Molecular and Cellular Proteomics, 2014, 13, 2246-2259.	2.5	58
278	Growth rate correlates negatively with protein turnover in Arabidopsis accessions. Plant Journal, 2017, 91, 416-429.	2.8	58
279	An Overview of Compounds Derived from the Shikimate and Phenylpropanoid Pathways and Their Medicinal Importance. Mini-Reviews in Medicinal Chemistry, 2017, 17, 1013-1027.	1.1	58
280	ci21A/Asr1 expression influences glucose accumulation in potato tubers. Plant Molecular Biology, 2007, 63, 719-730.	2.0	57
281	Genomic Analysis of Wild Tomato Introgressions Determining Metabolism- and Yield-Associated Traits. Plant Physiology, 2010, 152, 1772-1786.	2.3	57
282	Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature. Frontiers in Plant Science, 2013, 4, 499.	1.7	57
283	Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. Plant Cell, 2021, 33, 1554-1573.	3.1	57
284	Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex. Molecular Plant, 2020, 13, 1027-1046.	3.9	56
285	Combined correlationâ€based network and <scp>mQTL</scp> analyses efficiently identified loci for branchedâ€chain amino acid, serine to threonine, and proline metabolism in tomato seeds. Plant Journal, 2015, 81, 121-133.	2.8	55
286	Transcriptomic Analysis in Strawberry Fruits Reveals Active Auxin Biosynthesis and Signaling in the Ripe Receptacle. Frontiers in Plant Science, 2017, 8, 889.	1.7	55
287	An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under waterâ€deficit stress. Plant Journal, 2020, 103, 1614-1632.	2.8	55
288	Tricarboxylic Acid Cycle Activity Regulates Tomato Root Growth via Effects on Secondary Cell Wall Production Â. Plant Physiology, 2010, 153, 611-621.	2.3	54

#	Article	IF	CITATIONS
289	Liquid chromatography highâ€resolution mass spectrometry for fatty acid profiling. Plant Journal, 2015, 81, 529-536.	2.8	54
290	Genome-wide association studies: assessing trait characteristics in model and crop plants. Cellular and Molecular Life Sciences, 2021, 78, 5743-5754.	2.4	54
291	ASR1 Mediates Glucose-Hormone Cross Talk by Affecting Sugar Trafficking in Tobacco Plants Â. Plant Physiology, 2013, 161, 1486-1500.	2.3	53
292	An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. Plant, Cell and Environment, 2015, 38, 1591-1612.	2.8	53
293	Full-Length Transcript-Based Proteogenomics of Rice Improves Its Genome and Proteome Annotation. Plant Physiology, 2020, 182, 1510-1526.	2.3	53
294	Virus-Induced Alterations in Primary Metabolism Modulate Susceptibility to <i>Tobacco rattle virus</i> in Arabidopsis Â. Plant Physiology, 2014, 166, 1821-1838.	2.3	52
295	Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida. Nature Communications, 2019, 10, 737.	5.8	52
296	Developmental analysis of carbohydrate metabolism in tomato (Lycopersicon esculentum cv.) Tj ETQq0 0 0 rgBT	/Overlock 2.6	10 Tf 50 462
297	Impaired Malate and Fumarate Accumulation Due to the Mutation of the Tonoplast Dicarboxylate Transporter Has Little Effects on Stomatal Behavior. Plant Physiology, 2017, 175, 1068-1081.	2.3	51
298	Interorganelle Communication: Peroxisomal MALATE DEHYDROGENASE2 Connects Lipid Catabolism to Photosynthesis through Redox Coupling in Chlamydomonas. Plant Cell, 2018, 30, 1824-1847.	3.1	51
299	Redox-Regulation of Photorespiration through Mitochondrial Thioredoxin o1. Plant Physiology, 2019, 181, 442-457.	2.3	51
300	Conserved Changes in the Dynamics of Metabolic Processes during Fruit Development and Ripening across Species Â. Plant Physiology, 2014, 164, 55-68.	2.3	50
301	The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling. Molecular Plant-Microbe Interactions, 2017, 30, 829-841.	1.4	50
302	Several geranylgeranyl diphosphate synthase isoforms supply metabolic substrates for carotenoid biosynthesis in tomato. New Phytologist, 2021, 231, 255-272.	3.5	50
303	More to NAD+ than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis. Free Radical Biology and Medicine, 2018, 122, 86-95.	1.3	49
304	The role of nitrite and nitric oxide under low oxygen conditions in plants. New Phytologist, 2020, 225, 1143-1151.	3.5	49
305	CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator–repressor network. Horticulture Research, 2021, 8, 110.	2.9	49

306Development of a widely targeted volatilomics method for profiling volatilomes in plants. Molecular3.949Plant, 2022, 15, 189-202.

#	Article	IF	CITATIONS
307	Rice metabolic regulatory network spanning the entire life cycle. Molecular Plant, 2022, 15, 258-275.	3.9	49
308	Resolving the central metabolism of Arabidopsis guard cells. Scientific Reports, 2017, 7, 8307.	1.6	48
309	On the natural diversity of phenylacylated-flavonoid and their in planta function under conditions of stress. Phytochemistry Reviews, 2018, 17, 279-290.	3.1	48
310	OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biology, 2012, 12, 245.	1.6	47
311	Genome-enabled plant metabolomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 966, 7-20.	1.2	47
312	Canalization of Tomato Fruit Metabolism. Plant Cell, 2017, 29, 2753-2765.	3.1	47
313	The polyketide synthase OsPKS2 is essential for pollen exine and Ubisch body patterning in rice. Journal of Integrative Plant Biology, 2017, 59, 612-628.	4.1	47
314	The Integration of Metabolomics and Next-Generation Sequencing Data to Elucidate the Pathways of Natural Product Metabolism in Medicinal Plants. Planta Medica, 2018, 84, 855-873.	0.7	47
315	Metabolite profiles reveal interspecific variation in operation of the Calvin–Benson cycle in both C4 and C3 plants. Journal of Experimental Botany, 2019, 70, 1843-1858.	2.4	47
316	A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts. Nature Communications, 2020, 11, 4509.	5.8	47
317	The specific overexpression of a cyclinâ€dependent kinase inhibitor in tomato fruit mesocarp cells uncouples endoreduplication and cell growth. Plant Journal, 2011, 65, 543-556.	2.8	46
318	Salinity tolerance is related to cyanideâ€resistant alternative respiration in <i>Medicago truncatula</i> under sudden severe stress. Plant, Cell and Environment, 2016, 39, 2361-2369.	2.8	46
319	Leveraging Natural Variance towards Enhanced Understanding of Phytochemical Sunscreens. Trends in Plant Science, 2017, 22, 308-315.	4.3	46
320	Genetic diversity of strawberry germplasm using metabolomic biomarkers. Scientific Reports, 2018, 8, 14386.	1.6	46
321	<i>In vivo</i> detection of protein cysteine sulfenylation in plastids. Plant Journal, 2019, 97, 765-778.	2.8	46
322	Action of Gibberellins on Growth and Metabolism of Arabidopsis Plants Associated with High Concentration of Carbon Dioxide Â. Plant Physiology, 2012, 160, 1781-1794.	2.3	45
323	Transcriptomic and metabolomics responses to elevated cell wall invertase activity during tomato fruit set. Journal of Experimental Botany, 2017, 68, 4263-4279.	2.4	45
324	Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. Plant Journal, 2020, 102, 666-677.	2.8	44

#	Article	IF	CITATIONS
325	Manipulation of ZDS in tomato exposes carotenoid―and ABAâ€specific effects on fruit development and ripening. Plant Biotechnology Journal, 2020, 18, 2210-2224.	4.1	44
326	Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biology, 2021, 22, 260.	3.8	44
327	Acclimation in plants – the Green Hub consortium. Plant Journal, 2021, 106, 23-40.	2.8	44
328	Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 922.	1.7	43
329	Metabolic Engineering of Tomato Fruit Organic Acid Content Guided by Biochemical Analysis of an Introgression Line Â. Plant Physiology, 2012, 161, 397-407.	2.3	42
330	Multifaceted regulatory function of tomato SITAF1 in the response to salinity stress. New Phytologist, 2020, 225, 1681-1698.	3.5	42
331	Plant Single-Cell Metabolomics—Challenges and Perspectives. International Journal of Molecular Sciences, 2020, 21, 8987.	1.8	42
332	How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. Plant Journal, 2020, 101, 979-1000.	2.8	42
333	Diverse roles of <scp>MYB</scp> transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (<i>Camellia sinensis</i>). Plant Journal, 2022, 110, 1144-1165.	2.8	42
334	Plant metabolic gene clusters in the multi-omics era. Trends in Plant Science, 2022, 27, 981-1001.	4.3	41
335	A Redox-Mediated Modulation of Stem Bolting in Transgenic <i>Nicotiana sylvestris</i> Differentially Expressing the External Mitochondrial NADPH Dehydrogenase Â. Plant Physiology, 2009, 150, 1248-1259.	2.3	40
336	Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation. Plant Physiology, 2015, 169, 1499-1511.	2.3	40
337	Plant cell cultures as heterologous bio-factories for secondary metabolite production. Plant Communications, 2021, 2, 100235.	3.6	40
338	Profiling Primary Metabolites of Tomato Fruit with Gas Chromatography/Mass Spectrometry. Methods in Molecular Biology, 2011, 860, 101-109.	0.4	40
339	Antisense Suppression of the Small Chloroplast Protein CP12 in Tobacco Alters Carbon Partitioning and Severely Restricts Growth Â. Plant Physiology, 2011, 157, 620-631.	2.3	39
340	Analysis of a Range of Catabolic Mutants Provides Evidence That Phytanoyl-Coenzyme A Does Not Act as a Substrate of the Electron-Transfer Flavoprotein/Electron-Transfer Flavoprotein:Ubiquinone Oxidoreductase Complex in Arabidopsis during Dark-Induced Senescence Â. Plant Physiology, 2011, 157, 55-69.	2.3	39
341	Transcriptomic, proteomic and metabolic changes in Arabidopsis thaliana leaves after the onset of illumination. BMC Plant Biology, 2016, 16, 43.	1.6	39
342	A NAC transcription factor and its interaction protein hinder abscisic acid biosynthesis by synergistically repressing NCED5 in Citrus reticulata. Journal of Experimental Botany, 2020, 71, 3613-3625.	2.4	39

#	Article	IF	CITATIONS
343	Expression Atlas of <i>Selaginella moellendorffii</i> Provides Insights into the Evolution of Vasculature, Secondary Metabolism, and Roots. Plant Cell, 2020, 32, 853-870.	3.1	39
344	A reactive oxygen species burst causes haploid induction in maize. Molecular Plant, 2022, 15, 943-955.	3.9	39
345	Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation. Journal of Experimental Botany, 2013, 64, 2231-2242.	2.4	38
346	An integrated multiâ€layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. Plant Journal, 2018, 93, 1116-1128.	2.8	38
347	SWATH-MS-Based Proteomics: Strategies and Applications in Plants. Trends in Biotechnology, 2021, 39, 433-437.	4.9	38
348	Genetic variation in <i>YIGE1</i> contributes to ear length and grain yield in maize. New Phytologist, 2022, 234, 513-526.	3.5	38
349	High serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. Journal of Experimental Botany, 2017, 68, erw467.	2.4	37
350	Integrative field scale phenotyping for investigating metabolic components of water stress within a vineyard. Plant Methods, 2017, 13, 90.	1.9	37
351	Largeâ€scale metabolite quantitative trait locus analysis provides new insights for highâ€quality maize improvement. Plant Journal, 2019, 99, 216-230.	2.8	37
352	Extensive Variations in Diurnal Growth Patterns and Metabolism Among <i>Ulva</i> spp. Strains. Plant Physiology, 2019, 180, 109-123.	2.3	37
353	Single-Cell Genomics and Epigenomics: Technologies and Applications in Plants. Trends in Plant Science, 2020, 25, 1030-1040.	4.3	37
354	Identification of Enzyme Activity Quantitative Trait Loci in a Solanum lycopersicum × Solanum pennellii Introgression Line Population Â. Plant Physiology, 2011, 157, 998-1014.	2.3	36
355	Unravelling the <i>inÂvivo</i> regulation and metabolic role of the alternative oxidase pathway in C ₃ species under photoinhibitory conditions. New Phytologist, 2016, 212, 66-79.	3.5	36
356	GC-TOF-MS analysis reveals salt stress-responsive primary metabolites in Casuarina glauca tissues. Metabolomics, 2017, 13, 1.	1.4	36
357	Advances in metabolic flux analysis toward genome-scale profiling of higher organisms. Bioscience Reports, 2018, 38, .	1.1	36
358	The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Computational and Structural Biotechnology Journal, 2020, 18, 482-500.	1.9	36
359	Eating Away at ROS to Regulate Stomatal Opening. Trends in Plant Science, 2020, 25, 220-223.	4.3	36
360	Differential metabolic and coexpression networks of plant metabolism. Trends in Plant Science, 2015, 20, 266-268.	4.3	35

#	Article	IF	CITATIONS
361	Metabolic analyses of interspecific tomato recombinant inbred lines for fruit quality improvement. Metabolomics, 2015, 11, 1416-1431.	1.4	35
362	Identification of a Solanum pennellii Chromosome 4 Fruit Flavor and Nutritional Quality-Associated Metabolite QTL. Frontiers in Plant Science, 2016, 7, 1671.	1.7	35
363	Crop metabolomics: from diagnostics to assisted breeding. Metabolomics, 2018, 14, 148.	1.4	35
364	The Lack of Mitochondrial Thioredoxin TRXo1 Affects In Vivo Alternative Oxidase Activity and Carbon Metabolism under Different Light Conditions. Plant and Cell Physiology, 2019, 60, 2369-2381.	1.5	35
365	The Acetate Pathway Supports Flavonoid and Lipid Biosynthesis in Arabidopsis. Plant Physiology, 2020, 182, 857-869.	2.3	35
366	Assessing durum wheat ear and leaf metabolomes in the field through hyperspectral data. Plant Journal, 2020, 102, 615-630.	2.8	35
367	Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato. Journal of Experimental Botany, 2013, 64, 2449-2466.	2.4	34
368	Integrated genomics-based mapping reveals the genetics underlying maize flavonoid biosynthesis. BMC Plant Biology, 2017, 17, 17.	1.6	34
369	The mitochondrial <scp>NAD</scp> ⁺ transporter (<scp>NDT</scp> 1) plays important roles in cellular <scp>NAD</scp> ⁺ homeostasis in <i>Arabidopsis thaliana</i> . Plant Journal, 2019, 100, 487-504.	2.8	34
370	Thioredoxin <i>h2</i> contributes to the redox regulation of mitochondrial photorespiratory metabolism. Plant, Cell and Environment, 2020, 43, 188-208.	2.8	34
371	Born to revive: molecular and physiological mechanisms of double tolerance in a paleotropical and resurrection plant. New Phytologist, 2020, 226, 741-759.	3.5	34
372	From models to crop species: caveats and solutions for translational metabolomics. Frontiers in Plant Science, 2011, 2, 61.	1.7	33
373	Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism. Trends in Plant Science, 2015, 20, 490-497.	4.3	33
374	Targeted LC-MS Analysis for Plant Secondary Metabolites. Methods in Molecular Biology, 2018, 1778, 171-181.	0.4	33
375	Multiâ€ŧissue integration of transcriptomic and specialized metabolite profiling provides tools for assessing the common bean (<i>Phaseolus vulgaris</i>) metabolome. Plant Journal, 2019, 97, 1132-1153.	2.8	33
376	The Cassava Source–Sink project: opportunities and challenges for crop improvement by metabolic engineering. Plant Journal, 2020, 103, 1655-1665.	2.8	33
377	Metabolic and Developmental Adaptations of Growing Potato Tubers in Response to Specific Manipulations of the Adenylate Energy Status Â. Plant Physiology, 2008, 146, 1579-1598.	2.3	32
378	Can stable isotope mass spectrometry replace ‎radiolabelled approaches in metabolic studies?. Plant Science, 2016, 249, 59-69.	1.7	32

#	Article	IF	CITATIONS
379	MetNet: Metabolite Network Prediction from High-Resolution Mass Spectrometry Data in R Aiding Metabolite Annotation. Analytical Chemistry, 2019, 91, 1768-1772.	3.2	32
380	Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species <i>Colobanthus quitensis</i> . New Phytologist, 2020, 225, 754-768.	3.5	32
381	Quantitative trait loci analysis of seedâ€specialized metabolites reveals seedâ€specific flavonols and differential regulation of glycoalkaloid content in tomato. Plant Journal, 2020, 103, 2007-2024.	2.8	32
382	Global mapping of protein–metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity. Communications Biology, 2021, 4, 181.	2.0	32
383	Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends in Food Science and Technology, 2021, 109, 65-82.	7.8	32
384	High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height. Genome Biology, 2021, 22, 304.	3.8	32
385	The genetic architecture of branched-chain amino acid accumulation in tomato fruits. Journal of Experimental Botany, 2011, 62, 3895-3906.	2.4	31
386	Structured patterns in geographic variability of metabolic phenotypes in Arabidopsis thaliana. Nature Communications, 2012, 3, 1319.	5.8	31
387	Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. Plant, Cell and Environment, 2015, 38, 1457-1470.	2.8	31
388	Two mitochondrial phosphatases, PP2c63 and Sal2, are required for posttranslational regulation of the TCA cycle in Arabidopsis. Molecular Plant, 2021, 14, 1104-1118.	3.9	31
389	Complex Assembly and Metabolic Profiling of Arabidopsis thaliana Plants Overexpressing Vitamin B6 Biosynthesis Proteins. Molecular Plant, 2010, 3, 890-903.	3.9	30
390	Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis. Annals of Botany, 2019, 123, 691-705.	1.4	30
391	Metabolomics should be deployed in the identification and characterization of geneâ€edited crops. Plant Journal, 2020, 102, 897-902.	2.8	30
392	Decoding altitude-activated regulatory mechanisms occurring during apple peel ripening. Horticulture Research, 2020, 7, 120.	2.9	30
393	The sensitive to freezing3 mutation of Arabidopsis thaliana is a cold-sensitive allele of homomeric acetyl-CoA carboxylase that results in cold-induced cuticle deficiencies. Journal of Experimental Botany, 2012, 63, 5289-5299.	2.4	29
394	Heterologous expression of <i>AtPAP2</i> in transgenic potato influences carbon metabolism and tuber development. FEBS Letters, 2014, 588, 3726-3731.	1.3	29
395	The Kernel Size-Related Quantitative Trait Locus <i>qKW9</i> Encodes a Pentatricopeptide Repeat Protein That Aaffects Photosynthesis and Grain Filling. Plant Physiology, 2020, 183, 1696-1709.	2.3	29
396	Tyrâ€Asp inhibition of glyceraldehyde 3â€phosphate dehydrogenase affects plant redox metabolism. EMBO Iournal. 2021. 40. e106800.	3.5	29

#	Article	IF	CITATIONS
397	The INCREASE project: Intelligent Collections of foodâ€legume genetic resources for European agrofood systems. Plant Journal, 2021, 108, 646-660.	2.8	29
398	Pod indehiscence in common bean is associated with the fine regulation of <i>PvMYB26</i> . Journal of Experimental Botany, 2021, 72, 1617-1633.	2.4	29
399	Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. Plant Cell, 2022, 34, 557-578.	3.1	29
400	Silencing of the tomato Sugar Partitioning Affecting protein (<scp>SPA</scp>) modifies sink strength through a shift in leaf sugar metabolism. Plant Journal, 2014, 77, 676-687.	2.8	28
401	Towards model-driven characterization and manipulation of plant lipid metabolism. Progress in Lipid Research, 2020, 80, 101051.	5.3	28
402	Analysis of Tomato Postâ€Harvest Properties: Fruit Color, Shelf Life, and Fungal Susceptibility. Current Protocols in Plant Biology, 2020, 5, e20108.	2.8	28
403	Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato. Frontiers in Plant Science, 2017, 8, 214.	1.7	27
404	Inhibition of TOR Represses Nutrient Consumption, Which Improves Greening after Extended Periods of Etiolation. Plant Physiology, 2018, 178, 101-117.	2.3	27
405	Metabolic profiles of six African cultivars of cassava (<i>Manihot esculenta</i> Crantz) highlight bottlenecks of root yield. Plant Journal, 2020, 102, 1202-1219.	2.8	27
406	Pathways to de novo domestication of crop wild relatives. Plant Physiology, 2022, 188, 1746-1756.	2.3	27
407	Diversity: current and prospective secondary metabolites for nutrition and medicine. Current Opinion in Biotechnology, 2022, 74, 164-170.	3.3	27
408	Potential Valorization of Edible Nuts By-Products: Exploring the Immune-Modulatory and Antioxidants Effects of Selected Nut Shells Extracts in Relation to Their Metabolic Profiles. Antioxidants, 2022, 11, 462.	2.2	27
409	Molecular Mechanisms Preventing Senescence in Response to Prolonged Darkness in a Desiccation-Tolerant Plant. Plant Physiology, 2018, 177, 1319-1338.	2.3	26
410	Branched-Chain Amino Acid Catabolism Impacts Triacylglycerol Homeostasis in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2019, 179, 1502-1514.	2.3	26
411	Insights into ABA-mediated regulation of guard cell primary metabolism revealed by systems biology approaches. Progress in Biophysics and Molecular Biology, 2019, 146, 37-49.	1.4	26
412	The Mitochondrial Thioredoxin System Contributes to the Metabolic Responses Under Drought Episodes in Arabidopsis. Plant and Cell Physiology, 2019, 60, 213-229.	1.5	26
413	Flux balance analysis of metabolism during growth by osmotic cell expansion and its application to to to to to	2.8	26
414	Metabolomics based inferences to unravel phenolic compound diversity in cereals and its implications for human gut health. Trends in Food Science and Technology, 2022, 127, 14-25.	7.8	26

#	Article	IF	CITATIONS
415	Broadening Our Portfolio in the Genetic Improvement of Maize Chemical Composition. Trends in Genetics, 2016, 32, 459-469.	2.9	25
416	Metabolome Analysis of Multi-Connected Biparental Chromosome Segment Substitution Line Populations. Plant Physiology, 2018, 178, 612-625.	2.3	25
417	From genome to phenome: genomeâ€wide association studies and other approaches that bridge the genotype to phenotype gap. Plant Journal, 2019, 97, 5-7.	2.8	25
418	Characterizing the involvement of <i>FaMADS9</i> in the regulation of strawberry fruit receptacle development. Plant Biotechnology Journal, 2020, 18, 929-943.	4.1	25
419	Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. Plant Cell, 2022, 34, 2056-2079.	3.1	25
420	Metabolic profiles in C3, C3–C4 intermediate, C4-like, and C4 species in the genus <i>Flaveria</i> . Journal of Experimental Botany, 2022, 73, 1581-1601.	2.4	25
421	Jujube metabolome selection determined the edible properties acquired during domestication. Plant Journal, 2022, 109, 1116-1133.	2.8	25
422	The interplay between carbon availability and growth in different zones of the growing maize leaf. Plant Physiology, 2016, 172, pp.00994.2016.	2.3	24
423	Appropriate Thiamin Pyrophosphate Levels Are Required for Acclimation to Changes in Photoperiod. Plant Physiology, 2019, 180, 185-197.	2.3	24
424	Dissection of the domesticationâ€shaped genetic architecture of lettuce primary metabolism. Plant Journal, 2020, 104, 613-630.	2.8	24
425	The <i>genomes uncoupled</i> -dependent signalling pathway coordinates plastid biogenesis with the synthesis of anthocyanins. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190403.	1.8	24
426	Systems-Based Approaches to Unravel Networks and Individual Elements Involved in Apple Superficial Scald. Frontiers in Plant Science, 2020, 11, 8.	1.7	24
427	Multiomics-based dissection of citrus flavonoid metabolism using a Citrus reticulata × Poncirus trifoliata population. Horticulture Research, 2021, 8, 56.	2.9	24
428	Multi-omics analysis of early leaf development in Arabidopsis thaliana. Patterns, 2021, 2, 100235.	3.1	24
429	T-protein is present in large excess over the other proteins of the glycine cleavage system in leaves of Arabidopsis. Planta, 2018, 247, 41-51.	1.6	24
430	Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance. Plant Physiology, 2021, 185, 352-368.	2.3	24
431	Subcellular pyrophosphate metabolism in developing tubers of potato (Solanum tuberosum). Plant Molecular Biology, 2006, 62, 165-179.	2.0	23
432	Metabolic efficiency underpins performance trade-offs in growth of Arabidopsis thaliana. Nature Communications, 2014, 5, 3537.	5.8	23

#	Article	IF	CITATIONS
433	Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. Plants, 2020, 9, 117.	1.6	23
434	Lipidomic and transcriptomic analysis reveals reallocation of carbon flux from cuticular wax into plastid membrane lipids in a glossy "Newhall―navel orange mutant. Horticulture Research, 2020, 7, 41.	2.9	23
435	Longâ€distance stress and developmental signals associated with abscisic acid signaling in environmental responses. Plant Journal, 2021, 105, 477-488.	2.8	23
436	Rapid Identification of Proteinâ€Protein Interactions in Plants. Current Protocols in Plant Biology, 2019, 4, e20099.	2.8	22
437	The sucroseâ€toâ€malate ratio correlates with the faster <scp>CO</scp> ₂ and light stomatal responses of angiosperms compared to ferns. New Phytologist, 2019, 223, 1873-1887.	3.5	22
438	Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds. Metabolomics, 2019, 15, 46.	1.4	22
439	Thioredoxin-mediated regulation of (photo)respiration and central metabolism. Journal of Experimental Botany, 2021, 72, 5987-6002.	2.4	22
440	The genetics underlying metabolic signatures in a brown rice diversity panel and their vital role in human nutrition. Plant Journal, 2021, 106, 507-525.	2.8	22
441	Passing the Baton: Substrate Channelling in Respiratory Metabolism. Research, 2018, 2018, 1539325.	2.8	22
442	The interface of central metabolism with hormone signaling in plants. Current Biology, 2021, 31, R1535-R1548.	1.8	22
443	Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis. Plant Molecular Biology, 2015, 89, 319-338.	2.0	21
444	An allele of <i>Zm<scp>PORB</scp>2</i> encoding a protochlorophyllide oxidoreductase promotes tocopherol accumulation in both leaves and kernels of maize. Plant Journal, 2019, 100, 114-127.	2.8	21
445	Changes in intracellular NAD status affect stomatal development in an abscisic acidâ€dependent manner. Plant Journal, 2020, 104, 1149-1168.	2.8	21
446	Phytochrome-Dependent Temperature Perception Modulates Isoprenoid Metabolism. Plant Physiology, 2020, 183, 869-882.	2.3	21
447	Lowâ€ŧemperature tolerance of the Antarctic species <scp><i>Deschampsia antarctica</i></scp> : A complex metabolic response associated with nutrient remobilization. Plant, Cell and Environment, 2020, 43, 1376-1393.	2.8	21
448	Synthetic analogues of 2-oxo acids discriminate metabolic contribution of the 2-oxoglutarate and 2-oxoadipate dehydrogenases in mammalian cells and tissues. Scientific Reports, 2020, 10, 1886.	1.6	21
449	Ascorbate and Thiamin: Metabolic Modulators in Plant Acclimation Responses. Plants, 2020, 9, 101.	1.6	21
450	Pyrophosphate levels strongly influence ascorbate and starch content in tomato fruit. Frontiers in Plant Science, 2013, 4, 308.	1.7	20

#	Article	IF	CITATIONS
451	Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development. Journal of Experimental Botany, 2016, 67, 4091-4103.	2.4	20
452	Can cyanobacteria serve as a model of plant photorespiration? – a comparative meta-analysis of metabolite profiles. Journal of Experimental Botany, 2016, 67, 2941-2952.	2.4	20
453	Acquisition of Volatile Compounds by Gas Chromatography–Mass Spectrometry (GC-MS). Methods in Molecular Biology, 2018, 1778, 225-239.	0.4	20
454	Posttranslational Modification of the NADP-Malic Enzyme Involved in C ₄ Photosynthesis Modulates the Enzymatic Activity during the Day. Plant Cell, 2019, 31, 2525-2539.	3.1	20
455	Metabolome Profiling Supports the Key Role of the Spike in Wheat Yield Performance. Cells, 2020, 9, 1025.	1.8	20
456	The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism. Plant Physiology, 2021, 186, 1487-1506.	2.3	20
457	Sulfur deficiency-induced genes affect seed protein accumulation and composition under sulfate deprivation. Plant Physiology, 2021, 187, 2419-2434.	2.3	20
458	Kingdom-wide analysis of the evolution of the plant type III polyketide synthase superfamily. Plant Physiology, 2021, 185, 857-875.	2.3	20
459	Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions. Planta, 2015, 242, 677-691.	1.6	19
460	Comprehensive Metabolomics Studies of Plant Developmental Senescence. Methods in Molecular Biology, 2018, 1744, 339-358.	0.4	19
461	A Tomato Tocopherol Binding Protein Sheds Light on Intracellular α-tocopherol Metabolism in Plants. Plant and Cell Physiology, 2018, 59, 2188-2203.	1.5	19
462	Impairment of hormone pathways results in a general disturbance of fruit primary metabolism in tomato. Food Chemistry, 2019, 274, 170-179.	4.2	19
463	Deficiency in the Phosphorylated Pathway of Serine Biosynthesis Perturbs Sulfur Assimilation. Plant Physiology, 2019, 180, 153-170.	2.3	19
464	The Hot and the Colorful: Understanding the Metabolism, Genetics and Evolution of Consumer Preferred Metabolic Traits in Pepper and Related Species. Critical Reviews in Plant Sciences, 2019, 38, 339-381.	2.7	19
465	Downregulation of a Mitochondrial NAD+ Transporter (NDT2) Alters Seed Production and Germination in Arabidopsis. Plant and Cell Physiology, 2020, 61, 897-908.	1.5	19
466	Crop breeding – From experience-based selection to precision design. Journal of Plant Physiology, 2021, 256, 153313.	1.6	19
467	Natural variance at the interface of plant primary and specialized metabolism. Current Opinion in Plant Biology, 2022, 67, 102201.	3.5	19
468	Specialized Metabolites of the Flavonol Class Mediate Root Phototropism and Growth. Molecular Plant, 2016, 9, 1554-1555.	3.9	18

#	Article	IF	CITATIONS
469	Metabolome and Lipidome Profiles of Populus × canescens Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S. Frontiers in Plant Science, 2018, 9, 1292.	1.7	18
470	Metabolomics for understanding stomatal movements. Theoretical and Experimental Plant Physiology, 2019, 31, 91-102.	1.1	18
471	NTRC Plays a Crucial Role in Starch Metabolism, Redox Balance, and Tomato Fruit Growth. Plant Physiology, 2019, 181, 976-992.	2.3	18
472	A <i>Solanum neorickii</i> introgression population providing a powerful complement to the extensively characterized <i>Solanum pennellii</i> population. Plant Journal, 2019, 97, 391-403.	2.8	18
473	Developmentally controlled changes during Arabidopsis leaf development indicate causes for loss of stress tolerance with age. Journal of Experimental Botany, 2020, 71, 6340-6354.	2.4	18
474	Establishment of a GCâ€MSâ€based ¹³ Câ€positional isotopomer approach suitable for investigating metabolic fluxes in plant primary metabolism. Plant Journal, 2021, 108, 1213-1233.	2.8	18
475	The integration of MS-based metabolomics and multivariate data analysis allows for improved quality assessment of Zingiber officinale Roscoe. Phytochemistry, 2021, 190, 112843.	1.4	18
476	Multi-omics approaches explain the growth-promoting effect of the apocarotenoid growth regulator zaxinone in rice. Communications Biology, 2021, 4, 1222.	2.0	18
477	CsMYB184 regulates caffeine biosynthesis in tea plants. Plant Biotechnology Journal, 2022, 20, 1012-1014.	4.1	18
478	Rising rates of starch degradation during daytime and trehalose 6-phosphate optimize carbon availability. Plant Physiology, 2022, 189, 1976-2000.	2.3	18
479	Variability of Metabolite Levels Is Linked to Differential Metabolic Pathways in Arabidopsis's Responses to Abiotic Stresses. PLoS Computational Biology, 2014, 10, e1003656.	1.5	17
480	Photorespiratory Bypasses Lead to Increased Growth in Arabidopsis thaliana: Are Predictions Consistent with Experimental Evidence?. Frontiers in Bioengineering and Biotechnology, 2016, 4, 31.	2.0	17
481	Modulation of auxin signalling through <i>DIAGETROPICA</i> and <i>ENTIRE</i> differentially affects tomato plant growth via changes in photosynthetic and mitochondrial metabolism. Plant, Cell and Environment, 2019, 42, 448-465.	2.8	17
482	Co-regulation of Clustered and Neo-functionalized Genes in Plant-Specialized Metabolism. Plants, 2020, 9, 622.	1.6	17
483	Metabolite Profiling in Arabidopsisthaliana with Moderately Impaired Photorespiration Reveals Novel Metabolic Links and Compensatory Mechanisms of Photorespiration. Metabolites, 2021, 11, 391.	1.3	17
484	The utility of metabolomics as a tool to inform maize biology. Plant Communications, 2021, 2, 100187.	3.6	17
485	Combining novel technologies with interdisciplinary basic research to enhance horticultural crops. Plant Journal, 2022, 109, 35-46.	2.8	17
486	Cassava Metabolomics and Starch Quality. Current Protocols in Plant Biology, 2019, 4, e20102.	2.8	16

#	Article	IF	CITATIONS
487	Adenine Nucleotide and Nicotinamide Adenine Dinucleotide Measurements in Plants. Current Protocols in Plant Biology, 2020, 5, e20115.	2.8	16
488	Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species. Frontiers in Plant Science, 2021, 12, 642581.	1.7	16
489	OsGF14b modulates defense signaling pathways in rice panicle blast response. Crop Journal, 2021, 9, 725-738.	2.3	16
490	The cytosolic invertase NI6 affects vegetative growth, flowering, fruit set, and yield in tomato. Journal of Experimental Botany, 2021, 72, 2525-2543.	2.4	16
491	The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimatization. ELife, 2017, 6, .	2.8	16
492	Auxin boosts energy generation pathways to fuel pollen maturation in barley. Current Biology, 2022, 32, 1798-1811.e8.	1.8	16
493	A <i>Solanum lycopersicoides</i> reference genome facilitates insights into tomato specialized metabolism and immunity. Plant Journal, 2022, 110, 1791-1810.	2.8	16
494	A Novel Mechanism, Linked to Cell Density, Largely Controls Cell Division in <i>Synechocystis</i> . Plant Physiology, 2017, 174, 2166-2182.	2.3	15
495	To Bring Flowers or Do a Runner: Gibberellins Make the Decision. Molecular Plant, 2018, 11, 4-6.	3.9	15
496	Gas Chromatography–Mass Spectrometry-Based 13C-Labeling Studies in Plant Metabolomics. Methods in Molecular Biology, 2018, 1778, 47-58.	0.4	15
497	Evolution: An Early Role for Flavonoids in Defense against Oomycete Infection. Current Biology, 2019, 29, R688-R690.	1.8	15
498	A genetically validated approach for detecting inorganic polyphosphates in plants. Plant Journal, 2020, 102, 507-516.	2.8	15
499	Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Scientific Reports, 2020, 10, 17219.	1.6	15
500	A phased genome based on single sperm sequencing reveals crossover pattern and complex relatedness in tea plants. Plant Journal, 2021, 105, 197-208.	2.8	15
501	Exploring the genic resources underlying metabolites through mGWAS and mQTL in wheat: From large-scale gene identification and pathway elucidation to crop improvement. Plant Communications, 2021, 2, 100216.	3.6	15
502	The reliance of phytohormone biosynthesis on primary metabolite precursors. Journal of Plant Physiology, 2022, 268, 153589.	1.6	15
503	The metabolic changes that effect fruit quality during tomato fruit ripening. Molecular Horticulture, 2022, 2, .	2.3	15
504	Maize Field Study Reveals Covaried Microbiota and Metabolic Changes in Roots over Plant Growth. MBio, 2022, 13, e0258421.	1.8	15

#	Article	IF	CITATIONS
505	Decreasing the Mitochondrial Synthesis of Malate in Potato Tubers Does Not Affect Plastidial Starch Synthesis, Suggesting That the Physiological Regulation of ADPglucose Pyrophosphorylase Is Context Dependent Ă. Plant Physiology, 2012, 160, 2227-2238.	2.3	14
506	The natural variance of the Arabidopsis floral secondary metabolites. Scientific Data, 2018, 5, 180051.	2.4	14
507	Stable and Temporary Enzyme Complexes and Metabolons Involved in Energy and Redox Metabolism. Antioxidants and Redox Signaling, 2021, 35, 788-807.	2.5	14
508	Outstanding questions in flower metabolism. Plant Journal, 2020, 103, 1275-1288.	2.8	14
509	Environmentally-driven metabolite and lipid variations correspond to altered bioactivities of black wolfberry fruit. Food Chemistry, 2022, 372, 131342.	4.2	14
510	Metabolomics-based profiling for quality assessment and revealing the impact of drying of Turmeric (Curcuma longa L). Scientific Reports, 2022, 12, .	1.6	14
511	Guidelines for Sample Normalization to Minimize Batch Variation for Large-Scale Metabolic Profiling of Plant Natural Genetic Variance. Methods in Molecular Biology, 2018, 1778, 33-46.	0.4	13
512	Nano and Micro Unmanned Aerial Vehicles (UAVs): A New Grand Challenge for Precision Agriculture?. Current Protocols in Plant Biology, 2020, 5, e20103.	2.8	13
513	Towards the Development, Maintenance, and Standardized Phenotypic Characterization of Singleâ€ S eedâ€Descent Genetic Resources for Common Bean. Current Protocols, 2021, 1, e133.	1.3	13
514	The knowns and unknowns of intracellular partitioning of carbon and nitrogen, with focus on the organic acid-mediated interplay between mitochondrion and chloroplast. Journal of Plant Physiology, 2021, 266, 153521.	1.6	13
515	The Key to the Future Lies in the Past: Insights from Grain Legume Domestication and Improvement Should Inform Future Breeding Strategies. Plant and Cell Physiology, 2022, 63, 1554-1572.	1.5	13
516	Characterization of maize leaf pyruvate orthophosphate dikinase using high throughput sequencing. Journal of Integrative Plant Biology, 2018, 60, 670-690.	4.1	12
517	Doseâ€dependent interactions between two loci trigger altered shoot growth in BCâ€5Â×ÂKrotzenburgâ€0 (Kroâ€0) hybrids of <i>Arabidopsis thaliana</i> . New Phytologist, 2018, 217, 392-406.	3.5	12
518	Discriminating the Function(s) of Guard Cell ALMT Channels. Trends in Plant Science, 2018, 23, 649-651.	4.3	12
519	Validated MAGIC and GWAS population mapping reveals the link between vitamin E content and natural variation in chorismate metabolism in tomato. Plant Journal, 2021, 105, 907-923.	2.8	12
520	The AtMYB60 transcription factor regulates stomatal opening by modulating oxylipin synthesis in guard cells. Scientific Reports, 2022, 12, 533.	1.6	12
521	Inhibition of plastid PPase and NTT leads to major changes in starch and tuber formation in potato. Journal of Experimental Botany, 2018, 69, 1913-1924.	2.4	11
522	Modelâ€assisted identification of metabolic engineering strategies for <i>Jatropha curcas</i> lipid pathways. Plant Journal, 2020, 104, 76-95.	2.8	11

#	Article	IF	CITATIONS
523	Metabolic Roles of Plant Mitochondrial Carriers. Biomolecules, 2020, 10, 1013.	1.8	11
524	Differences in Metabolic and Physiological Responses between Local and Widespread Grapevine Cultivars under Water Deficit Stress. Agronomy, 2020, 10, 1052.	1.3	11
525	Characterization of In Vivo Function(s) of Members of the Plant Mitochondrial Carrier Family. Biomolecules, 2020, 10, 1226.	1.8	11
526	Plasticity of rosette size in response to nitrogen availability is controlled by an <scp>RCC1</scp> â€family protein. Plant, Cell and Environment, 2021, 44, 3398-3411.	2.8	11
527	Metabolismâ€mediated mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms. Plant, Cell and Environment, 2022, 45, 296-311.	2.8	11
528	Bringing more players into play: Leveraging stress in genome wide association studies. Journal of Plant Physiology, 2022, 271, 153657.	1.6	11
529	Strawberry fruit FanCXE1 carboxylesterase is involved in the catabolism of volatile esters during the ripening process. Horticulture Research, 2022, 9, .	2.9	11
530	13CO2 labeling kinetics in maize reveal impaired efficiency of C4 photosynthesis under low irradiance. Plant Physiology, 2022, 190, 280-304.	2.3	11
531	Measurements of Electron Partitioning Between Cytochrome and Alternative Oxidase Pathways in Plant Tissues. Methods in Molecular Biology, 2017, 1670, 203-217.	0.4	10
532	Pan-Genomic Illumination of Tomato Identifies Novel Gene–Trait Interactions. Trends in Plant Science, 2019, 24, 882-884.	4.3	10
533	An Abundance and Interaction Encyclopedia of Plant Protein Function. Trends in Plant Science, 2020, 25, 627-630.	4.3	10
534	Camellia sinensis (Tea). Trends in Genetics, 2021, 37, 201-202.	2.9	10
535	Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development. Plant Science, 2021, 306, 110863.	1.7	10
536	When a Crop Goes Back to the Wild: Feralization. Trends in Plant Science, 2021, 26, 543-545.	4.3	10
537	From Affinity to Proximity Techniques to Investigate Protein Complexes in Plants. International Journal of Molecular Sciences, 2021, 22, 7101.	1.8	10
538	Ancestral sequence reconstruction - An underused approach to understand the evolution of gene function in plants?. Computational and Structural Biotechnology Journal, 2021, 19, 1579-1594.	1.9	10
539	The nutritional profile and human health benefit of pigmented rice and the impact of post-harvest processes and product development on the nutritional components: A review. Critical Reviews in Food Science and Nutrition, 2023, 63, 3867-3894.	5.4	10
540	Inheritance patterns in metabolism and growth in diallel crosses of Arabidopsis thaliana from a single growth habitat. Heredity, 2018, 120, 463-473.	1.2	9

#	Article	IF	CITATIONS
541	The Effect of Single and Multiple SERAT Mutants on Serine and Sulfur Metabolism. Frontiers in Plant Science, 2018, 9, 702.	1.7	9
542	Construction and applications of a B vitamin genetic resource for investigation of vitaminâ€dependent metabolism in maize. Plant Journal, 2020, 101, 442-454.	2.8	9
543	Mobile Transposable Elements Shape Plant Genome Diversity. Trends in Plant Science, 2020, 25, 1062-1064.	4.3	9
544	Type I H+-pyrophosphatase regulates the vacuolar storage of sucrose in citrus fruit. Journal of Experimental Botany, 2020, 71, 5935-5947.	2.4	9
545	Targeting Key Genes to Tailor Old and New Crops for a Greener Agriculture. Molecular Plant, 2020, 13, 354-356.	3.9	9
546	Overexpression of thioredoxin m in chloroplasts alters carbon and nitrogen partitioning in tobacco. Journal of Experimental Botany, 2021, 72, 4949-4964.	2.4	9
547	Towards Development, Maintenance, and Standardized Phenotypic Characterization of Singleâ€5eedâ€Descent Genetic Resources for Lupins. Current Protocols, 2021, 1, e191.	1.3	9
548	A Chimeric TGA Repressor Slows Down Fruit Maturation and Ripening in Tomato. Plant and Cell Physiology, 2022, 63, 120-134.	1.5	9
549	A comparative transcriptomics and eQTL approach identifies <i>SIWD40</i> as a tomato fruit ripening regulator. Plant Physiology, 2022, 190, 250-266.	2.3	9
550	Genetic architecture of seed glycerolipids in Asian cultivated rice. Plant, Cell and Environment, 0, , .	2.8	9
551	Coupling Radiotracer Experiments with Chemical Fractionation for the Estimation of Respiratory Fluxes. Methods in Molecular Biology, 2017, 1670, 17-30.	0.4	8
552	The Role of Persulfide Metabolism During Arabidopsis Seed Development Under Light and Dark Conditions. Frontiers in Plant Science, 2018, 9, 1381.	1.7	8
553	Cucumber ovaries inhibited by dominant fruit express a dynamic developmental program, distinct from either senescenceâ€determined or fruitâ€setting ovaries. Plant Journal, 2018, 96, 651-669.	2.8	8
554	On the Detection and Functional Significance of the Protein–Protein Interactions of Mitochondrial Transport Proteins. Biomolecules, 2020, 10, 1107.	1.8	8
555	Decreased Levels of Thioredoxin o1 Influences Stomatal Development and Aperture but Not Photosynthesis under Non-Stress and Saline Conditions. International Journal of Molecular Sciences, 2021, 22, 1063.	1.8	8
556	Downregulation of the E2 Subunit of 2-Oxoglutarate Dehydrogenase Modulates Plant Growth by Impacting Carbon–Nitrogen Metabolism in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2021, 62, 798-814.	1.5	8
557	Mild reductions in guard cell sucrose synthase 2 expression leads to slower stomatal opening and decreased whole plant transpiration in Nicotiana tabacum L. Environmental and Experimental Botany, 2021, 184, 104370.	2.0	8
558	Resolving the metabolon: is the proof in the metabolite?. EMBO Reports, 2020, 21, e50774.	2.0	8

#	Article	IF	CITATIONS
559	Metabolic diversity in tuber tissues of native Chiloé potatoes and commercial cultivars of Solanum tuberosum ssp. tuberosum L Metabolomics, 2018, 14, 138.	1.4	7
560	Using precision phenotyping to inform de novo domestication. Plant Physiology, 2021, 186, 1397-1411.	2.3	7
561	Plant biotechnology for sustainable agriculture and food safety. Journal of Plant Physiology, 2021, 261, 153416.	1.6	7
562	A Comparative Study of the Antihypertensive and Cardioprotective Potentials of Hot and Cold Aqueous Extracts of Hibiscus sabdariffa L. in Relation to Their Metabolic Profiles. Frontiers in Pharmacology, 2022, 13, 840478.	1.6	7
563	Azacytidine arrests ripening in cultivated strawberry (Fragaria × ananassa) by repressing key genes and altering hormone contents. BMC Plant Biology, 2022, 22, .	1.6	7
564	Point mutations that boost aromatic amino acid production and CO ₂ assimilation in plants. Science Advances, 2022, 8, .	4.7	7
565	Measurement of Tricarboxylic Acid Cycle Enzyme Activities in Plants. Methods in Molecular Biology, 2017, 1670, 167-182.	0.4	6
566	How do wheat plants cope with Pyricularia oryzae infection? A physiological and metabolic approach. Planta, 2020, 252, 24.	1.6	6
567	Dissection of flag leaf metabolic shifts and their relationship with those occurring simultaneously in developing seed by application of non-targeted metabolomics. PLoS ONE, 2020, 15, e0227577.	1.1	6
568	Phytochromes control metabolic flux, and their action at the seedling stage determines adult plant biomass. Journal of Experimental Botany, 2021, 72, 3263-3278.	2.4	6
569	Plant metabolism paves the way for breeding crops with high nutritional value and stable yield. Science China Life Sciences, 2021, 64, 2202-2205.	2.3	6
570	The <i>Arabidopsis</i> electronâ€ŧransfer flavoprotein:ubiquinone oxidoreductase is required during normal seed development and germination. Plant Journal, 2022, 109, 196-214.	2.8	6
571	Towards the Development, Maintenance and Standardized Phenotypic Characterization of Singleâ€Seedâ€Descent Genetic Resources for Chickpea. Current Protocols, 2022, 2, e371.	1.3	6
572	Past accomplishments and future challenges of the multi-omics characterization of leaf growth. Plant Physiology, 2022, 189, 473-489.	2.3	6
573	<i>Tecia solanivora</i> infestation increases tuber starch accumulation in Pastusa Suprema potatoes. Journal of Integrative Plant Biology, 2018, 60, 1083-1096.	4.1	5
574	A push, and a pull, to enhance nitrogen use efficiency in rice. Plant Journal, 2020, 103, 5-6.	2.8	5
575	Metabolic shifts during fruit development in pungent and non-pungent peppers. Food Chemistry, 2022, 375, 131850.	4.2	5
576	Metabolomic selection–based machine learning improves fruit taste prediction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5

#	Article	IF	CITATIONS
577	The Assembly of Super-Complexes in the Plant Chloroplast. Biomolecules, 2021, 11, 1839.	1.8	5
578	Natural alleles of the abscisic acid catabolism gene <i>ZmAbh4</i> modulate water use efficiency and carbon isotope discrimination in maize. Plant Cell, 2022, 34, 3860-3872.	3.1	5
579	Rice Grain Quality Benchmarking Through Profiling of Volatiles and Metabolites in Grains Using Gas Chromatography Mass Spectrometry. Methods in Molecular Biology, 2019, 1892, 187-199.	0.4	4
580	Working day and night: plastid casein kinase 2 catalyses phosphorylation of proteins with diverse functions in light―and darkâ€adapted plastids. Plant Journal, 2020, 104, 546-558.	2.8	4
581	Differential responses of three <i>Urochloa</i> species to low phosphorus availability. Annals of Applied Biology, 2021, 179, 216-230.	1.3	4
582	Multiomics analyses reveal the roles of the ASR1 transcription factor in tomato fruits. Journal of Experimental Botany, 2021, 72, 6490-6509.	2.4	4
583	Annotation of Specialized Metabolites from High-Throughput and High-Resolution Mass Spectrometry Metabolomics. Methods in Molecular Biology, 2020, 2104, 209-225.	0.4	4
584	Reduced auxin signalling through the cyclophilin gene <i>DIAGEOTROPICA</i> impacts tomato fruit development and metabolism during ripening. Journal of Experimental Botany, 2022, 73, 4113-4128.	2.4	4
585	Comparative Molecular and Metabolic Profiling of Two Contrasting Wheat Cultivars under Drought Stress. International Journal of Molecular Sciences, 2021, 22, 13287.	1.8	4
586	Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry. Journal of Visualized Experiments, 2014, , .	0.2	3
587	The genomes of Taxus species unveil novel candidates in the biosynthesis of taxoids. Molecular Plant, 2021, 14, 1773-1775.	3.9	3
588	Will Casuarina glauca Stress Resilience Be Maintained in the Face of Climate Change?. Metabolites, 2021, 11, 593.	1.3	3
589	A cross-kingdom history. ELife, 2015, 4, .	2.8	3
590	The Bacillus subtilis glutamate anti-metabolon. Nature Metabolism, 2022, 4, 161-162.	5.1	3
591	Regulation of Plant Primary Metabolism – How Results From Novel Technologies Are Extending Our Understanding From Classical Targeted Approaches. Critical Reviews in Plant Sciences, 2022, 41, 32-51.	2.7	3
592	Dynamically regulating metabolic fluxes with synthetic metabolons. Trends in Biotechnology, 2022, 40, 1019-1020.	4.9	3
593	Observability of plant metabolic networks is reflected in the correlation of metabolic profiles Plant Physiology, 2016, 172, pp.00900.2016.	2.3	2
594	Systems biology: A new CAM era. Nature Plants, 2016, 2, 16190.	4.7	2

#	Article	IF	CITATIONS
595	Commonalities and differences in plants deficient in autophagy and alternative pathways of respiration on response to extended darkness. Plant Signaling and Behavior, 2017, 12, e1377877.	1.2	2
596	Carbon Atomic Survey for Identification of Selected Metabolic Fluxes. Methods in Molecular Biology, 2018, 1778, 59-67.	0.4	2
597	PlantaSyst: Teaming up for Systems Biology and Biotechnology. Trends in Plant Science, 2020, 25, 621-624.	4.3	2
598	Using landrace transcription factor alleles to increase yield in modern rice under low input agriculture. Journal of Plant Physiology, 2021, 258-259, 153362.	1.6	2
599	Associating primary and specialized metabolism with salt induced osmotic stress tolerance in maize. New Phytologist, 2021, 230, 2091-2093.	3.5	2
600	Sugarcane cell suspension reveals major metabolic changes under different nitrogen starvation regimes. Bragantia, 0, 80, .	1.3	2
601	Genome-wide association studies of Arabidopsis dark-induced senescence reveals signatures of autophagy in metabolic reprogramming. Autophagy, 2022, 18, 457-458.	4.3	2
602	Mitochondrial and peroxisomal <scp>NAD</scp> ⁺ uptake are important for improved photosynthesis and seed yield under elevated <scp> CO ₂ </scp> concentrations. Plant Journal, 0, , .	2.8	2
603	High-energy-level metabolism and transport occur at the transition from closed to open flowers. Plant Physiology, 2022, 190, 319-339.	2.3	2
604	Crop genetic diversity uncovers metabolites, elements, and gene networks predicted to be associated with high plant biomass yields in maize. , 2022, 1, .		2
605	Extending the cascade: identification of a mitogenâ€activated protein kinase phosphatase playing a key role in rice yield. Plant Journal, 2018, 95, 935-936.	2.8	1
606	Tomato multiomics at aPEELing resolution. Nature Plants, 2020, 6, 1394-1395.	4.7	1
607	Cross-Species Metabolic Profiling of Floral Specialized Metabolism Facilitates Understanding of Evolutional Aspects of Metabolism Among Brassicaceae Species. Frontiers in Plant Science, 2021, 12, 640141.	1.7	1
608	Plants upcycle gene functions to suit their roots. Trends in Plant Science, 2021, 26, 996-998.	4.3	1
609	Unravelling the molecular networks that regulate kiwifruit flavor. New Phytologist, 2022, 233, 8-10.	3.5	1
610	Different Metabolic Roles for Alternative Oxidase in Leaves of Palustrine and Terrestrial Species. Frontiers in Plant Science, 2021, 12, 752795.	1.7	1
611	<i>A. thaliana</i> Hybrids Develop Growth Abnormalities through Integration of Stress, Hormone and Growth Signaling. Plant and Cell Physiology, 2022, 63, 944-954.	1.5	1
612	From flowers to seeds: how the metabolism of flowers frames plant reproduction. Biochemist, 2021, 43, 14-18.	0.2	0

#	Article	IF	CITATIONS
613	Corrigendum to: Posttranslational Modification of the NADP-Malic Enzyme Involved in C4 Photosynthesis Modulates the Enzymatic Activity during the Day. Plant Cell, 2022, 34, 698-699.	3.1	0
614	Understanding carotenoid biosynthetic pathway control points using metabolomic analysis and natural genetic variation. Methods in Enzymology, 2022, , .	0.4	0
615	Title is missing!. , 2020, 15, e0227577.		Ο
616	Title is missing!. , 2020, 15, e0227577.		0
617	Title is missing!. , 2020, 15, e0227577.		Ο
618	Title is missing!. , 2020, 15, e0227577.		0
619	Measurement of Flower Metabolite Concentrations Using Gas Chromatography–Mass Spectrometry and High-Performance Liquid Chromatography–Mass Spectrometry. Methods in Molecular Biology, 2022, 2484, 3-12.	0.4	0