
Remzi Åžhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/191592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The destruction of Erzurum ski-jumping complex by a landslide: evaluation of an engineering design failure. Natural Hazards, 2021, 107, 475-496.	3.4	3
2	EFFECT OF RECYCLED CONCRETE AGGREGATE, AIR ENTRAINING ADMIXTURE AND MAXIMUM AGGREGATE PARTICLE SIZE ON THE BEHAVIOR OF CONCRETE UNDER FREEZE-THAW CYCLES. Journal of Green Building, 2021, 16, 217-233.	0.8	1
3	Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars. Materials, 2021, 14, 2409.	2.9	12
4	A study on mechanical properties of polymer concrete containing electronic plastic waste. Composite Structures, 2017, 178, 50-62.	5.8	83
5	Comparison of carbonation resistance and uniformity of SCC and CC core samples. Magazine of Concrete Research, 2014, 66, 531-539.	2.0	3
6	Pore structure analysis of hardened cement mortars containing silica fume and different nano-powders. Construction and Building Materials, 2014, 53, 658-664.	7.2	117
7	Neutron Equivalent Dose Rate Measurements of Gypsum-Waste Tire Rubber Layered Structures. International Journal of Polymer Analysis and Characterization, 2013, 18, 423-429.	1.9	27
8	Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study. Energy and Buildings, 2013, 58, 292-301.	6.7	197
9	Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7012-7019.	5.6	138
10	Determination of radiation attenuation coefficients of heavyweight- and normal-weight concretes containing colemanite and barite for 0.663MeV Î ³ -rays. Annals of Nuclear Energy, 2011, 38, 1274-1278.	1.8	62
11	Determination of transmission factors of concretes with different water/cement ratio, curing condition, and dosage of cement and air entraining agent. Annals of Nuclear Energy, 2011, 38, 1505-1511.	1.8	18
12	Neutron dose transmission measurements for several new concrete samples including colemanite. Annals of Nuclear Energy, 2010, 37, 996-998.	1.8	29
13	Radiation transmission of heavyweight and normal-weight concretes containing colemanite for 6MV and 18MV X-rays using linear accelerator. Annals of Nuclear Energy, 2010, 37, 339-344.	1.8	45
14	Determination of the optimum conditions for de-icing salt scaling resistance of concrete by visual examination and surface scaling. Construction and Building Materials, 2010, 24, 353-360.	7.2	21
15	Optimization Study and Damage Evaluation in Concrete Mixtures Exposed to Slow Freeze–Thaw Cycles. Journal of Materials in Civil Engineering, 2007, 19, 609-615.	2.9	11
16	The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cement and Concrete Research, 2004, 34, 845-848.	11.0	181
17	The effects of different cement dosages, slumps and pumice aggregate ratios on the compressive strength and densities of concrete. Cement and Concrete Research, 2003, 33, 1245-1249.	11.0	42