List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1915437/publications.pdf Version: 2024-02-01

YAO-YU FENC

#	Article	IF	CITATIONS
1	Cryptosporidiosis outbreak caused by <i>Cryptosporidium parvum</i> subtype IIdA20G1 in neonatal calves. Transboundary and Emerging Diseases, 2022, 69, 278-285.	1.3	11
2	Enterocytozoon bieneusi. Trends in Parasitology, 2022, 38, 95-96.	1.5	16
3	Comparative Characterization of CpCDPK1 and CpCDPK9, Two Potential Drug Targets Against Cryptosporidiosis. Microorganisms, 2022, 10, 333.	1.6	5
4	Emergence of zoonotic Cryptosporidium parvum in China. Trends in Parasitology, 2022, 38, 335-343.	1.5	24
5	A productive immunocompetent mouse model of cryptosporidiosis with long oocyst shedding duration for immunological studies. Journal of Infection, 2022, 84, 710-721.	1.7	7
6	High zoonotic potential of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in wild nonhuman primates from Yunnan Province, China. Parasites and Vectors, 2022, 15, 85.	1.0	5
7	Molecular detection of a novel Ancylostoma sp. by whole mtDNA sequence from pangolin Manis javanica. Parasites and Vectors, 2022, 15, 70.	1.0	3
8	Age and episodeâ€associated occurrence of <i>Cryptosporidium</i> species and subtypes in a birthâ€cohort of dairy calves. Transboundary and Emerging Diseases, 2022, 69, .	1.3	3
9	Diarrhoea outbreak caused by coinfections of <i>Cryptosporidium parvum</i> subtype IIdA20G1 and rotavirus in preâ€weaned dairy calves. Transboundary and Emerging Diseases, 2022, 69, .	1.3	8
10	Characterization of Calcium-Dependent Protein Kinase 2A, a Potential Drug Target Against Cryptosporidiosis. Frontiers in Microbiology, 2022, 13, 883674.	1.5	2
11	Characterization of Dense Granule Metalloproteinase INS-16 in Cryptosporidium parvum. International Journal of Molecular Sciences, 2022, 23, 7617.	1.8	3
12	Sympatric Recombination in Zoonotic Cryptosporidium Leads to Emergence of Populations with Modified Host Preference. Molecular Biology and Evolution, 2022, 39, .	3.5	10
13	<i>Cryptosporidium ratti</i> n. sp. (Apicomplexa: Cryptosporidiidae) and genetic diversity of <i>Cryptosporidium</i> spp. in brown rats (<i>Rattus norvegicus</i>) in the Czech Republic. Parasitology, 2021, 148, 84-97.	0.7	24
14	Characterizations of Enterocytozoon bieneusi at new genetic loci reveal a lack of strict host specificity among common genotypes and the existence of a canine-adapted Enterocytozoon species. International Journal for Parasitology, 2021, 51, 215-223.	1.3	9
15	Development of a Subtyping Tool for Zoonotic Pathogen <i>Cryptosporidium canis</i> . Journal of Clinical Microbiology, 2021, 59, .	1.8	20
16	Cryptosporidial Infection Suppresses Intestinal Epithelial Cell MAPK Signaling Impairing Host Anti-Parasitic Defense. Microorganisms, 2021, 9, 151.	1.6	11
17	Subtype Characterization and Zoonotic Potential of Cryptosporidium felis in Cats in Guangdong and Shanghai, China. Pathogens, 2021, 10, 89.	1.2	8
18	Molecular Epidemiology of Human Cryptosporidiosis in Low- and Middle-Income Countries. Clinical Microbiology Reviews, 2021, 34, .	5.7	56

YAO-YU FENG

#	Article	IF	CITATIONS
19	Occurrence and genetic diversity of Cryptosporidium spp. in wild foxes, wolves, jackals, and bears in central Europe. Folia Parasitologica, 2021, 68, .	0.7	9
20	Small ruminants and zoonotic cryptosporidiosis. Parasitology Research, 2021, 120, 4189-4198.	0.6	28
21	Zoonotic parasites in farmed exotic animals in China: Implications to public health. International Journal for Parasitology: Parasites and Wildlife, 2021, 14, 241-247.	0.6	9
22	Impact of mcr-1 on the Development of High Level Colistin Resistance in Klebsiella pneumoniae and Escherichia coli. Frontiers in Microbiology, 2021, 12, 666782.	1.5	10
23	Codon usage analysis of zoonotic coronaviruses reveals lower adaptation to humans by SARS-CoV-2. Infection, Genetics and Evolution, 2021, 89, 104736.	1.0	13
24	Comparative Study of Two Insulinlike Proteases in Cryptosporidium parvum. Microorganisms, 2021, 9, 861.	1.6	3
25	Cryptosporidium myocastoris n. sp. (Apicomplexa: Cryptosporidiidae), the Species Adapted to the Nutria (Myocastor coypus). Microorganisms, 2021, 9, 813.	1.6	35
26	Insulinase-like Protease 1 Contributes to Macrogamont Formation in Cryptosporidium parvum. MBio, 2021, 12, .	1.8	10
27	Preliminary Characterization of Two Small Insulinase-Like Proteases in Cryptosporidium parvum. Frontiers in Microbiology, 2021, 12, 651512.	1.5	3
28	Subtyping Cryptosporidium xiaoi, a Common Pathogen in Sheep and Goats. Pathogens, 2021, 10, 800.	1.2	11
29	Molecular detection of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in school children at the Thai-Myanmar border. Parasitology Research, 2021, 120, 2887-2895.	0.6	4
30	Genus-level evolutionary relationships of FAR proteins reflect the diversity of lifestyles of free-living and parasitic nematodes. BMC Biology, 2021, 19, 178.	1.7	4
31	Molecular analysis of cryptosporidiosis cases in Western Australia in 2019 and 2020 supports the occurrence of two swimming pool associated outbreaks and reveals the emergence of a rare C. hominis IbA12G3 subtype. Infection, Genetics and Evolution, 2021, 92, 104859.	1.0	12
32	Advances in molecular epidemiology of cryptosporidiosis in dogs and cats. International Journal for Parasitology, 2021, 51, 787-795.	1.3	13
33	Genetic characterizations of Cryptosporidium spp. from pet rodents indicate high zoonotic potential of pathogens from chinchillas. One Health, 2021, 13, 100269.	1.5	5
34	Molecular characterization of the waterborne pathogens Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, Cyclospora cayetanensis and Eimeria spp. in wastewater and sewage in Guangzhou, China. Parasites and Vectors, 2021, 14, 66.	1.0	17
35	Development and Application of a gp60-Based Subtyping Tool for Cryptosporidium bovis. Microorganisms, 2021, 9, 2067.	1.6	8
36	Taxonomy and molecular epidemiology of Cryptosporidium and Giardia – a 50Âyear perspective (1971–2021). International Journal for Parasitology, 2021, 51, 1099-1119.	1.3	128

#	Article	IF	CITATIONS
37	Zoonotic giardiasis: an update. Parasitology Research, 2021, 120, 4199-4218.	0.6	71
38	An Update on Zoonotic Cryptosporidium Species and Genotypes in Humans. Animals, 2021, 11, 3307.	1.0	84
39	Association of Common Zoonotic Pathogens With Concentrated Animal Feeding Operations. Frontiers in Microbiology, 2021, 12, 810142.	1.5	6
40	Cryptosporidium felis differs from other Cryptosporidium spp. in codon usage. Microbial Genomics, 2021, 7, .	1.0	3
41	Population genetic analysis suggests genetic recombination is responsible for increased zoonotic potential of Enterocytozoon bieneusi from ruminants in China. One Health, 2020, 11, 100184.	1.5	7
42	Subtype distribution of zoonotic pathogen <i>Cryptosporidium felis</i> in humans and animals in several countries. Emerging Microbes and Infections, 2020, 9, 2446-2454.	3.0	19
43	Diagnosis and molecular typing of Enterocytozoon bieneusi: the significant role of domestic animals in transmission of human microsporidiosis. Research in Veterinary Science, 2020, 133, 251-261.	0.9	29
44	Occurrence and molecular characterization of Giardia duodenalis in lambs in Djelfa, the central steppe of Algeria. Parasitology Research, 2020, 119, 2965-2973.	0.6	4
45	Cryptosporidium Species and C. parvum Subtypes in Farmed Bamboo Rats. Pathogens, 2020, 9, 1018.	1.2	8
46	Contribution of hospitals to the occurrence of enteric protists in urban wastewater. Parasitology Research, 2020, 119, 3033-3040.	0.6	12
47	Molecular characterization and zoonotic potential of Enterocytozoon bieneusi, Ciardia duodenalis and Cryptosporidium sp. in farmed masked palm civets (Paguma larvata) in southern China. Parasites and Vectors, 2020, 13, 403.	1.0	19
48	Subtyping Cryptosporidium ryanae: A Common Pathogen in Bovine Animals. Microorganisms, 2020, 8, 1107.	1.6	18
49	Population structure and geographical segregation of Cryptosporidium parvum IId subtypes in cattle in China. Parasites and Vectors, 2020, 13, 425.	1.0	15
50	Characterization of Calcium-Dependent Protein Kinases 3, a Protein Involved in Growth of Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 907.	1.5	8
51	Expression and Functional Studies of INS-5, an Insulinase-Like Protein in Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 719.	1.5	7
52	Common occurrence of divergent Cryptosporidium species and Cryptosporidium parvum subtypes in farmed bamboo rats (Rhizomys sinensis). Parasites and Vectors, 2020, 13, 149.	1.0	19
53	Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature, 2020, 583, 286-289.	13.7	599
54	Zoonotic potential of Enterocytozoon bieneusi and Giardia duodenalis in horses and donkeys in northern China. Parasitology Research, 2020, 119, 1101-1108.	0.6	20

#	Article	IF	CITATIONS
55	Multilocus sequence typing of Enterocytozoon bieneusi in crab-eating macaques (Macaca) Tj ETQq1 1 0.78431	4 rgBT /O\	verlock 10 Tf 5
56	Characterization of Three Calcium-Dependent Protein Kinases of Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 622203.	1.5	6
57	Comparative genomic analysis of three intestinal species reveals reductions in secreted pathogenesis determinants in bovine-specific and non-pathogenic Cryptosporidium species. Microbial Genomics, 2020, 6, .	1.0	13
58	Infection patterns, clinical significance, and genetic characteristics of Enterocytozoon bieneusi and Giardia duodenalis in dairy cattle in Jiangsu, China. Parasitology Research, 2019, 118, 3053-3060.	0.6	30
59	Cryptosporidium parvum and Cryptosporidium hominis subtypes in crab-eating macaques. Parasites and Vectors, 2019, 12, 350.	1.0	26
60	Different distribution of Cryptosporidium species between horses and donkeys. Infection, Genetics and Evolution, 2019, 75, 103954.	1.0	21
61	Characterization of INS-15, A Metalloprotease Potentially Involved in the Invasion of Cryptosporidium parvum. Microorganisms, 2019, 7, 452.	1.6	16
62	Divergent Copies of a Cryptosporidium parvum-Specific Subtelomeric Gene. Microorganisms, 2019, 7, 366.	1.6	4
63	Comparative genomics: how has it advanced our knowledge of cryptosporidiosis epidemiology?. Parasitology Research, 2019, 118, 3195-3204.	0.6	17
64	Epidemiological distribution of genotypes of Giardia duodenalis in humans in Spain. Parasites and Vectors, 2019, 12, 432.	1.0	29
65	Potential impacts of host specificity on zoonotic or interspecies transmission of Enterocytozoon bieneusi. Infection, Genetics and Evolution, 2019, 75, 104033.	1.0	47
66	Prevalence and genotypic identification of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in pre-weaned dairy calves in Guangdong, China. Parasites and Vectors, 2019, 12, 41.	1.0	55
67	Genotypes and public health potential of Enterocytozoon bieneusi and Giardia duodenalis in crab-eating macaques. Parasites and Vectors, 2019, 12, 254.	1.0	22
68	Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major human-infecting species. BMC Genomics, 2019, 20, 406.	1.2	37
69	Differential Expression of Three Cryptosporidium Species-Specific MEDLE Proteins. Frontiers in Microbiology, 2019, 10, 1177.	1.5	11
70	Host Specificity of Enterocytozoon bieneusi and Public Health Implications. Trends in Parasitology, 2019, 35, 436-451.	1.5	196
71	Outbreak of cryptosporidiosis due to Cryptosporidium parvum subtype IIdA19G1 in neonatal calves on a dairy farm in China. International Journal for Parasitology, 2019, 49, 569-577.	1.3	39
72	Characterization of a Species-Specific Insulinase-Like Protease in Cryptosporidium parvum. Frontiers in Microbiology, 2019, 10, 354.	1.5	18

#	Article	IF	CITATIONS
73	Mitochondrial genome sequence variation as a useful marker for assessing genetic heterogeneity among Cyclospora cayetanensis isolates and source-tracking. Parasites and Vectors, 2019, 12, 47.	1.0	13
74	Genetic characterization of Cryptosporidium spp. and Giardia duodenalis in dogs and cats in Guangdong, China. Parasites and Vectors, 2019, 12, 571.	1.0	28
75	Host-adapted Cryptosporidium and Enterocytozoon bieneusi genotypes in straw-colored fruit bats in Nigeria. International Journal for Parasitology: Parasites and Wildlife, 2019, 8, 19-24.	0.6	17
76	Giardia: an under-reported foodborne parasite. International Journal for Parasitology, 2019, 49, 1-11.	1.3	131
77	Divergent Cryptosporidium parvum subtype and Enterocytozoon bieneusi genotypes in dromedary camels in Algeria. Parasitology Research, 2018, 117, 905-910.	0.6	21
78	Population genetic characterization of Cyclospora cayetanensis from discrete geographical regions. Experimental Parasitology, 2018, 184, 121-127.	0.5	11
79	Enterocytozoon bieneusi genotypes in Tibetan sheep and yaks. Parasitology Research, 2018, 117, 721-727.	0.6	37
80	Epidemiological observations on cryptosporidiosis and molecular characterization of Cryptosporidium spp. in sheep and goats in Kuwait. Parasitology Research, 2018, 117, 1631-1636.	0.6	26
81	Genotypes and subtypes of Cryptosporidium spp. in diarrheic lambs and goat kids in northern Greece. Parasitology International, 2018, 67, 472-475.	0.6	25
82	Zoonotic Cryptosporidium species and subtypes in lambs and goat kids in Algeria. Parasites and Vectors, 2018, 11, 582.	1.0	30
83	Persistent Occurrence of Cryptosporidium hominis and Giardia duodenalis Subtypes in a Welfare Institute. Frontiers in Microbiology, 2018, 9, 2830.	1.5	13
84	Catalytic N ₂ O decomposition over CeMeO _y /γâ€Al ₂ O ₃ (MeÂ=ÂMn, Cu, Zn) catalysts prepared by impregnation method. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2233.	0.8	4
85	Molecular characterization of Cryptosporidium spp. and Giardia duodenalis in children in Egypt. Parasites and Vectors, 2018, 11, 403.	1.0	40
86	Genetic diversity within dominant Enterocytozoon bieneusi genotypes in pre-weaned calves. Parasites and Vectors, 2018, 11, 170.	1.0	32
87	Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum. Parasites and Vectors, 2018, 11, 312.	1.0	14
88	Genetic Diversity and Population Structure of Cryptosporidium. Trends in Parasitology, 2018, 34, 997-1011.	1.5	365
89	Ginkgolide B ameliorates oxidized lowâ€density lipoproteinâ€induced endothelial dysfunction via modulating Lectinâ€like oxâ€LDLâ€receptorâ€1 and NADPH oxidase 4 expression and inflammatory cascades. Phytotherapy Research, 2018, 32, 2417-2427.	2.8	27
90	Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. International Journal for Parasitology, 2017, 47, 281-290.	1.3	58

YAO-YU FENG

#	Article	IF	CITATIONS
91	Longitudinal monitoring of Cryptosporidium species in pre-weaned dairy calves on five farms in Shanghai, China. Veterinary Parasitology, 2017, 241, 14-19.	0.7	51
92	High genetic diversity of Giardia duodenalis assemblage E in pre-weaned dairy calves in Shanghai, China, revealed by multilocus genotyping. Parasitology Research, 2017, 116, 2101-2110.	0.6	31
93	Environmental Transport of Emerging Human-Pathogenic Cryptosporidium Species and Subtypes through Combined Sewer Overflow and Wastewater. Applied and Environmental Microbiology, 2017, 83, .	1.4	50
94	Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food and Waterborne Parasitology, 2017, 8-9, 14-32.	1.1	162
95	Multilocus genotyping of Giardia duodenalis in Tibetan sheep and yaks in Qinghai, China. Veterinary Parasitology, 2017, 247, 70-76.	0.7	32
96	Subtype analysis of zoonotic pathogen Cryptosporidium skunk genotype. Infection, Genetics and Evolution, 2017, 55, 20-25.	1.0	22
97	Preliminary Characterization of MEDLE-2, a Protein Potentially Involved in the Invasion of Cryptosporidium parvum. Frontiers in Microbiology, 2017, 8, 1647.	1.5	16
98	Molecular Epidemiology of Cryptosporidiosis in China. Frontiers in Microbiology, 2017, 8, 1701.	1.5	103
99	Multilocus Sequence Typing Tool for <i>Cyclospora cayetanensis</i> . Emerging Infectious Diseases, 2016, 22, 1464-1467.	2.0	38
100	Dominant genera of cyanobacteria in Lake Taihu and their relationships with environmental factors. Journal of Microbiology, 2016, 54, 468-476.	1.3	17
101	Genotypes of <i>Cryptosporidium</i> spp. and <i>Enterocytozoon bieneusi</i> in Human Immunodeficiency Virusâ€Infected Patients in Lagos, Nigeria. Journal of Eukaryotic Microbiology, 2016, 63, 414-418.	0.8	17
102	Cryptosporidium species and Cryptosporidium parvum subtypes in dairy calves and goat kids reared under traditional farming systems in Turkey. Experimental Parasitology, 2016, 170, 16-20.	0.5	34
103	Identity of Fasciola spp. in sheep in Egypt. Parasites and Vectors, 2016, 9, 623.	1.0	42
104	Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents. Journal of Water and Health, 2016, 14, 411-423.	1.1	56
105	Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics, 2016, 17, 1006.	1.2	63
106	Development of a multilocus sequence typing tool for high-resolution subtyping and genetic structure characterization of Cryptosporidium ubiquitum. Infection, Genetics and Evolution, 2016, 45, 256-261.	1.0	14
107	Comparative genomics reveals Cyclospora cayetanensis possesses coccidia-like metabolism and invasion components but unique surface antigens. BMC Genomics, 2016, 17, 316.	1.2	42
108	Distribution of Cryptosporidium species in Tibetan sheep and yaks in Qinghai, China. Veterinary Parasitology, 2016, 215, 58-62.	0.7	52

#	Article	IF	CITATIONS
109	Genotypes of Cryptosporidium spp., Enterocytozoon bieneusi and Giardia duodenalis in dogs and cats in Shanghai, China. Parasites and Vectors, 2016, 9, 121.	1.0	84
110	Correlation Between ABCA1 Gene Polymorphism and aopA-I and HDL-C in Abdominal Aortic Aneurysm. Medical Science Monitor, 2016, 22, 172-176.	0.5	9
111	Genetic similarities between Cyclospora cayetanensis and cecum-infecting avian Eimeria spp. in apicoplast and mitochondrial genomes. Parasites and Vectors, 2015, 8, 358.	1.0	40
112	Molecular Characterization of Echinococcus granulosus Sensu Lato from Farm Animals in Egypt. PLoS ONE, 2015, 10, e0118509.	1.1	44
113	Morphologic and Genotypic Characterization of Psoroptes Mites from Water Buffaloes in Egypt. PLoS ONE, 2015, 10, e0141554.	1.1	3
114	Subtyping Novel Zoonotic Pathogen Cryptosporidium Chipmunk Genotype I. Journal of Clinical Microbiology, 2015, 53, 1648-1654.	1.8	57
115	Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. BMC Genomics, 2015, 16, 320.	1.2	74
116	Isolation and Enrichment of Cryptosporidium DNA and Verification of DNA Purity for Whole-Genome Sequencing. Journal of Clinical Microbiology, 2015, 53, 641-647.	1.8	45
117	Occurrence and molecular characterization of Cryptosporidium spp. and Enterocytozoon bieneusi in dairy cattle, beef cattle and water buffaloes in China. Veterinary Parasitology, 2015, 207, 220-227.	0.7	108
118	Identification and morphologic and molecular characterization of Cyclospora macacae n. sp. from rhesus monkeys in China. Parasitology Research, 2015, 114, 1811-1816.	0.6	32
119	Dominance of Giardia duodenalis assemblage A and Enterocytozoon bieneusi genotype BEB6 in sheep in Inner Mongolia, China. Veterinary Parasitology, 2015, 210, 235-239.	0.7	57
120	Development and Evaluation of Three Real-Time PCR Assays for Genotyping and Source Tracking Cryptosporidium spp. in Water. Applied and Environmental Microbiology, 2015, 81, 5845-5854.	1.4	27
121	<i>Enterocytozoon bieneusi</i> Genotypes in Yaks (<i>Bos grunniens</i>) and Their Public Health Potential. Journal of Eukaryotic Microbiology, 2015, 62, 21-25.	0.8	28
122	Preliminary Molecular Characterizations of Sarcoptes scaibiei (Acari: Sarcoptidae) from Farm Animals in Egypt. PLoS ONE, 2014, 9, e94705.	1.1	25
123	Distribution and Clinical Manifestations of Cryptosporidium Species and Subtypes in HIV/AIDS Patients in Ethiopia. PLoS Neglected Tropical Diseases, 2014, 8, e2831.	1.3	133
124	Occurrence, Source, and Human Infection Potential of <i>Cryptosporidium</i> and <i>Enterocytozoon bieneusi</i> in Drinking Source Water in Shanghai, China, during a Pig Carcass Disposal Incident. Environmental Science & Technology, 2014, 48, 14219-14227.	4.6	88
125	Non-coding RNAs in epithelial immunity to <i>Cryptosporidium</i> infection. Parasitology, 2014, 141, 1233-1243.	0.7	38
126	Host Specificity and Source of Enterocytozoon bieneusi Genotypes in a Drinking Source Watershed. Applied and Environmental Microbiology, 2014, 80, 218-225.	1.4	104

#	Article	IF	CITATIONS
127	Multilocus Sequence Typing of an Emerging Cryptosporidium hominis Subtype in the United States. Journal of Clinical Microbiology, 2014, 52, 524-530.	1.8	47
128	Population genetics of Cryptosporidium meleagridis in humans and birds: evidence for cross-species transmission. International Journal for Parasitology, 2014, 44, 515-521.	1.3	44
129	Influence of an arsenate-reducing and polycyclic aromatic hydrocarbons-degrading Pseudomonas isolate on growth and arsenic accumulation in Pteris vittata L. and removal of phenanthrene. International Biodeterioration and Biodegradation, 2014, 94, 12-18.	1.9	14
130	Occurrence of human-pathogenic Enterocytozoon bieneusi, Giardia duodenalis and Cryptosporidium genotypes in laboratory macaques in Guangxi, China. Parasitology International, 2014, 63, 132-137.	0.6	84
131	Occurrence and molecular characterization of Cryptosporidium spp. in yaks (Bos grunniens) in China. Veterinary Parasitology, 2014, 202, 113-118.	0.7	33
132	Characterization of polycyclic aromatic hydrocarbons degradation and arsenate reduction by a versatile Pseudomonas isolate. International Biodeterioration and Biodegradation, 2014, 90, 79-87.	1.9	21
133	Cryptosporidium parvum IId family: clonal population and dispersal from Western Asia to other geographical regions. Scientific Reports, 2014, 4, 4208.	1.6	58
134	Immunology of Cryptosporidiosis. , 2014, , 423-454.		8
135	Subtyping <i>Cryptosporidium ubiquitum,</i> a Zoonotic Pathogen Emerging in Humans. Emerging Infectious Diseases, 2014, 20, 217-224.	2.0	172
136	Simultaneous biodegradation of phenanthrene and oxidation of arsenite by a dual-functional bacterial consortium. International Biodeterioration and Biodegradation, 2013, 82, 173-179.	1.9	10
137	Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2013, 135, 15913-15922.	6.6	400
138	Population genetic characterisation of dominant Cryptosporidium parvum subtype IIaA15G2R1. International Journal for Parasitology, 2013, 43, 1141-1147.	1.3	72
139	Prevalence and characterization of Cryptosporidium spp. in dairy cattle in Nile River delta provinces, Egypt. Experimental Parasitology, 2013, 135, 518-523.	0.5	61
140	Identity and public health potential of Cryptosporidium spp. in water buffalo calves in Egypt. Veterinary Parasitology, 2013, 191, 123-127.	0.7	57
141	Periparturient transmission of Cryptosporidium xiaoi from ewes to lambs. Veterinary Parasitology, 2013, 197, 627-633.	0.7	39
142	Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove. Applied Microbiology and Biotechnology, 2013, 97, 7919-7934.	1.7	66
143	Near Infrared Absorption of CdSe _{<i>x</i>} Te _{1–<i>x</i>} Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability. ACS Nano, 2013, 7, 5215-5222.	7.3	374
144	Zoonotic Cryptosporidium Species and Enterocytozoon bieneusi Genotypes in HIV-Positive Patients on Antiretroviral Therapy. Journal of Clinical Microbiology, 2013, 51, 557-563.	1.8	209

#	Article	IF	CITATIONS
145	Concurrent Infections of Giardia duodenalis, Enterocytozoon bieneusi, and Clostridium difficile in Children during a Cryptosporidiosis Outbreak in a Pediatric Hospital in China. PLoS Neglected Tropical Diseases, 2013, 7, e2437.	1.3	167
146	Genetic Recombination and <i>Cryptosporidium hominis</i> Virulent Subtype lbA10G2. Emerging Infectious Diseases, 2013, 19, 1573-82.	2.0	62
147	Molecular Surveillance of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi by Genotyping and Subtyping Parasites in Wastewater. PLoS Neglected Tropical Diseases, 2012, 6, e1809.	1.3	175
148	Scalable Single-Step Noninjection Synthesis of High-Quality Core/Shell Quantum Dots with Emission Tunable from Violet to Near Infrared. ACS Nano, 2012, 6, 11066-11073.	7.3	61
149	Anthroponotic Enteric Parasites in Monkeys in Public Park, China. Emerging Infectious Diseases, 2012, 18, 1640-1643.	2.0	113
150	Extended Outbreak of Cryptosporidiosis in a Pediatric Hospital, China. Emerging Infectious Diseases, 2012, 18, 312-314.	2.0	70
151	Population genetic analysis of Enterocytozoon bieneusi in humans. International Journal for Parasitology, 2012, 42, 287-293.	1.3	54
152	Phenanthrene biodegradation by halophilic Martelella sp. AD-3. Journal of Applied Microbiology, 2012, 113, 779-789.	1.4	94
153	Common occurrence of a unique Cryptosporidium ryanae variant in zebu cattle and water buffaloes in the buffer zone of the Chitwan National Park, Nepal. Veterinary Parasitology, 2012, 185, 309-314.	0.7	53
154	Multilocus Sequence Subtyping and Genetic Structure of Cryptosporidium muris and Cryptosporidium and endersoni. PLoS ONE, 2012, 7, e43782.	1.1	35
155	The importance of subtype analysis of Cryptosporidium spp. in epidemiological investigations of human cryptosporidiosis in Iran and other Mideast countries. Gastroenterology and Hepatology From Bed To Bench, 2012, 5, 67-70.	0.6	20
156	MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection. International Journal for Parasitology, 2011, 41, 397-403.	1.3	43
157	Genetic characterizations of Cryptosporidium spp. and Giardia duodenalis in humans in Henan, China. Experimental Parasitology, 2011, 127, 42-45.	0.5	70
158	Subtypes of Cryptosporidium spp. in mice and other small mammals. Experimental Parasitology, 2011, 127, 238-242.	0.5	57
159	Development of a Multilocus Sequence Tool for Typing <i>Cryptosporidium muris</i> and <i>Cryptosporidium andersoni</i> . Journal of Clinical Microbiology, 2011, 49, 34-41.	1.8	60
160	Occurrence, Source, and Human Infection Potential of Cryptosporidium and Giardia spp. in Source and Tap Water in Shanghai, China. Applied and Environmental Microbiology, 2011, 77, 3609-3616.	1.4	71
161	Development of a Multilocus Sequence Typing Tool for High-Resolution Genotyping of Enterocytozoon bieneusi. Applied and Environmental Microbiology, 2011, 77, 4822-4828.	1.4	103
162	Zoonotic Potential and Molecular Epidemiology of <i>Giardia</i> Species and Giardiasis. Clinical Microbiology Reviews, 2011, 24, 110-140.	5.7	914

YAO-YU FENG

#	Article	IF	CITATIONS
163	Cervine genotype is the major Cryptosporidium genotype in sheep in China. Parasitology Research, 2010, 106, 341-347.	0.6	60
164	Cryptosporidium in wild placental mammals. Experimental Parasitology, 2010, 124, 128-137.	0.5	49
165	<i>Cryptosporidium</i> Genotype and Subtype Distribution in Raw Wastewater in Shanghai, China: Evidence for Possible Unique <i>Cryptosporidium hominis</i> Transmission. Journal of Clinical Microbiology, 2009, 47, 153-157.	1.8	102
166	90-Kilodalton Heat Shock Protein, Hsp90, as a Target for Genotyping <i>Cryptosporidium</i> spp. Known To Infect Humans. Eukaryotic Cell, 2009, 8, 478-482.	3.4	13
167	Detection of <i>Toxoplasma gondii</i> Oocysts in Water Sample Concentrates by Real-Time PCR. Applied and Environmental Microbiology, 2009, 75, 3477-3483.	1.4	31
168	Prevalence and distribution of Cryptosporidium spp. in dairy cattle in Heilongjiang Province, China. Parasitology Research, 2009, 105, 797-802.	0.6	48
169	A semantic image retrieval approach between visual features and medical concepts. Proceedings of SPIE, 2009, , .	0.8	0
170	Multilocus phylogenetic analysis of Cryptosporidium andersoni (Apicomplexa) isolated from a bactrian camel (Camelus bactrianus) in China. Parasitology Research, 2008, 102, 915-920.	0.6	30
171	High intragenotypic diversity of Giardia duodenalis in dairy cattle on three farms. Parasitology Research, 2008, 103, 87-92.	0.6	61
172	Molecular characterization of the Cryptosporidium cervine genotype from a sika deer (Cervus nippon) Tj ETQqO	0 0 rgBT / 0.8	Overlock 10 T
173	Molecular characterization of a new genotype of Cryptosporidium from American minks (Mustela) Tj ETQq1 1 0.	784314 rş 0.7	gBT_/Overlo <mark>ck</mark>
174	New strategy for band-gap tuning in semiconductor nanocrystals. Research on Chemical Intermediates, 2008, 34, 287-298.	1.3	10
175	Zoonotic cryptosporidiosis. FEMS Immunology and Medical Microbiology, 2008, 52, 309-323.	2.7	291
176	Anti-Toxoplasma gondii activity of GAS in vitro. Journal of Ethnopharmacology, 2008, 118, 503-507.	2.0	31
177	Alternative Immunofluorescent Labeling of <i>Cryptosporidium parvum</i> in Water Samples Using Semiconductor Quantum Dots. Water Environment Research, 2008, 80, 725-731.	1.3	5
178	<i>Cryptosporidium</i> Genotypes in Wildlife from a New York Watershed. Applied and Environmental Microbiology, 2007, 73, 6475-6483.	1.4	141
179	Inactivation of particle-associated viruses by UV. Journal of Water Supply: Research and Technology - AQUA, 2007, 56, 393-397.	0.6	2
180	A facile route to violet- to orange-emitting Cd _{<i>x</i>} Zn _{1â^'<i>x</i>} Se alloy nanocrystals via cation exchange reaction. Nanotechnology, 2007, 18, 385606.	1.3	68

#	Article	IF	CITATIONS
181	Wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Veterinary Parasitology, 2007, 144, 1-9.	0.7	249
182	Nonhydrolytic Alcoholysis Route to Morphology-Controlled ZnO Nanocrystals. Small, 2007, 3, 1194-1199.	5.2	51
183	Facile and Reproducible Synthesis of Red-Emitting CdSe Nanocrystals in Amine with Long-Term Fixation of Particle Size and Size Distribution. Journal of Physical Chemistry C, 2007, 111, 526-531.	1.5	83
184	Facile Synthesis of Morphology-Controlled Platinum Nanocrystals. Chemistry of Materials, 2006, 18, 2468-2471.	3.2	119
185	Photoreactivation of Escherichia coli following medium-pressure ultraviolet disinfection and its control using chloramination. Water Science and Technology, 2006, 53, 123-129.	1.2	16
186	Use of Semiconductor Quantum Dots for Photostable Immunofluorescence Labeling of Cryptosporidium parvum. Applied and Environmental Microbiology, 2004, 70, 5732-5736.	1.4	70
187	Tetraaquabis[5-(4-pyridylN-oxide)tetrazolato-κN2]cadmium: the intermediate in the synthesis of a tetrazole from a nitrile and an azide. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, m194-m196.	0.4	3
188	Crystallographic characterization of the intermediate in the synthesis of tetrazole from nitrile and azide in water. Inorganic Chemistry Communication, 2004, 7, 492-494.	1.8	20
189	Improvement of recoveries for the determination of protozoa Cryptosporidium and Giardia in water using method 1623. Journal of Microbiological Methods, 2004, 58, 321-325.	0.7	49
190	Kinetics of beta-mannanase fermentation by Bacillus licheniformis. Biotechnology Letters, 2003, 25, 1143-1146.	1.1	17
191	Effects of pH and temperature on the survival of coliphages MS2 and Q?. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 549-552.	1.4	92
192	Optimization of agitation, aeration, and temperature conditions for maximum Î ² -mannanase production. Enzyme and Microbial Technology, 2003, 32, 282-289.	1.6	62
193	Synthesis and characterization of [Ga(TPP)H] (TPP=tetraphenylporphyrinato). Inorganic Chemistry Communication, 2003, 6, 466-468.	1.8	12
194	Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width. Journal of the American Chemical Society, 2003, 125, 13559-13563.	6.6	657
195	Strong optical limiting capability of a triosmium cluster bonded indium porphyrin complex [(TPP)InOs3(μ-H)2(CO)9(μ-η2-C5H4N)]. Chemical Communications, 2003, , 1882-1883.	2.2	26
196	Effect of Particles on the Recovery of Cryptosporidium Oocysts from Source Water Samples of Various Turbidities. Applied and Environmental Microbiology, 2003, 69, 1898-1903.	1.4	51
197	Aqua(nitrilotriacetato)(1,10-phenanthroline)iron(III) monohydrate: a seven-coordinate iron(III) complex. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m34-m35.	0.4	4
198	A new method of preparation of iron(II) porphyrin complexes—isolation and characterization of amine complexes of ferrous porphyrin. Polyhedron, 1996, 15, 2677-2679.	1.0	5

#	Article	IF	CITATIONS
199	Identification and Characterization of Three Spore Wall Proteins of Enterocytozoon Bieneusi. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
200	Decline in Cryptosporidium Infection in Free-Ranging Rhesus Monkeys in a Park After Public Health Interventions. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2