Yao-Yu Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1915437/publications.pdf

Version: 2024-02-01

200 papers

11,399 citations

54 h-index 98 g-index

206 all docs

206 docs citations

206 times ranked 8367 citing authors

#	Article	IF	CITATIONS
1	Zoonotic Potential and Molecular Epidemiology of <i>Giardia</i> Species and Giardiasis. Clinical Microbiology Reviews, 2011, 24, 110-140.	13.6	914
2	Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width. Journal of the American Chemical Society, 2003, 125, 13559-13563.	13.7	657
3	Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature, 2020, 583, 286-289.	27.8	599
4	Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2013, 135, 15913-15922.	13.7	400
5	Near Infrared Absorption of CdSe _{<i>x</i>} Te _{1–<i>x</i>} Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability. ACS Nano, 2013, 7, 5215-5222.	14.6	374
6	Genetic Diversity and Population Structure of Cryptosporidium. Trends in Parasitology, 2018, 34, 997-1011.	3.3	365
7	Zoonotic cryptosporidiosis. FEMS Immunology and Medical Microbiology, 2008, 52, 309-323.	2.7	291
8	Wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Veterinary Parasitology, 2007, 144, 1-9.	1.8	249
9	Zoonotic Cryptosporidium Species and Enterocytozoon bieneusi Genotypes in HIV-Positive Patients on Antiretroviral Therapy. Journal of Clinical Microbiology, 2013, 51, 557-563.	3.9	209
10	Host Specificity of Enterocytozoon bieneusi and Public Health Implications. Trends in Parasitology, 2019, 35, 436-451.	3.3	196
11	Molecular Surveillance of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi by Genotyping and Subtyping Parasites in Wastewater. PLoS Neglected Tropical Diseases, 2012, 6, e1809.	3.0	175
12	Subtyping <i>Cryptosporidium ubiquitum,</i> a Zoonotic Pathogen Emerging in Humans. Emerging Infectious Diseases, 2014, 20, 217-224.	4.3	172
13	Concurrent Infections of Giardia duodenalis, Enterocytozoon bieneusi, and Clostridium difficile in Children during a Cryptosporidiosis Outbreak in a Pediatric Hospital in China. PLoS Neglected Tropical Diseases, 2013, 7, e2437.	3.0	167
14	Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food and Waterborne Parasitology, 2017, 8-9, 14-32.	2.7	162
15	<i>Cryptosporidium</i> Genotypes in Wildlife from a New York Watershed. Applied and Environmental Microbiology, 2007, 73, 6475-6483.	3.1	141
16	Distribution and Clinical Manifestations of Cryptosporidium Species and Subtypes in HIV/AIDS Patients in Ethiopia. PLoS Neglected Tropical Diseases, 2014, 8, e2831.	3.0	133
17	Giardia: an under-reported foodborne parasite. International Journal for Parasitology, 2019, 49, 1-11.	3.1	131
18	Taxonomy and molecular epidemiology of Cryptosporidium and Giardia – a 50Âyear perspective (1971–2021). International Journal for Parasitology, 2021, 51, 1099-1119.	3.1	128

#	Article	IF	CITATIONS
19	Facile Synthesis of Morphology-Controlled Platinum Nanocrystals. Chemistry of Materials, 2006, 18, 2468-2471.	6.7	119
20	Anthroponotic Enteric Parasites in Monkeys in Public Park, China. Emerging Infectious Diseases, 2012, 18, 1640-1643.	4.3	113
21	Occurrence and molecular characterization of Cryptosporidium spp. and Enterocytozoon bieneusi in dairy cattle, beef cattle and water buffaloes in China. Veterinary Parasitology, 2015, 207, 220-227.	1.8	108
22	Host Specificity and Source of Enterocytozoon bieneusi Genotypes in a Drinking Source Watershed. Applied and Environmental Microbiology, 2014, 80, 218-225.	3.1	104
23	Development of a Multilocus Sequence Typing Tool for High-Resolution Genotyping of Enterocytozoon bieneusi. Applied and Environmental Microbiology, 2011, 77, 4822-4828.	3.1	103
24	Molecular Epidemiology of Cryptosporidiosis in China. Frontiers in Microbiology, 2017, 8, 1701.	3.5	103
25	<i>Cryptosporidium</i> Genotype and Subtype Distribution in Raw Wastewater in Shanghai, China: Evidence for Possible Unique <i>Cryptosporidium hominis</i> Transmission. Journal of Clinical Microbiology, 2009, 47, 153-157.	3.9	102
26	Phenanthrene biodegradation by halophilic Martelella sp. AD-3. Journal of Applied Microbiology, 2012, 113, 779-789.	3.1	94
27	Effects of pH and temperature on the survival of coliphages MS2 and Q?. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 549-552.	3.0	92
28	Occurrence, Source, and Human Infection Potential of <i>Cryptosporidium</i> and <i>Enterocytozoon bieneusi</i> in Drinking Source Water in Shanghai, China, during a Pig Carcass Disposal Incident. Environmental Science & En	10.0	88
29	Occurrence of human-pathogenic Enterocytozoon bieneusi, Giardia duodenalis and Cryptosporidium genotypes in laboratory macaques in Guangxi, China. Parasitology International, 2014, 63, 132-137.	1.3	84
30	Genotypes of Cryptosporidium spp., Enterocytozoon bieneusi and Giardia duodenalis in dogs and cats in Shanghai, China. Parasites and Vectors, 2016, 9, 121.	2.5	84
31	An Update on Zoonotic Cryptosporidium Species and Genotypes in Humans. Animals, 2021, 11, 3307.	2.3	84
32	Facile and Reproducible Synthesis of Red-Emitting CdSe Nanocrystals in Amine with Long-Term Fixation of Particle Size and Size Distribution. Journal of Physical Chemistry C, 2007, 111, 526-531.	3.1	83
33	Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. BMC Genomics, 2015, 16, 320.	2.8	74
34	Population genetic characterisation of dominant Cryptosporidium parvum subtype IIaA15G2R1. International Journal for Parasitology, 2013, 43, 1141-1147.	3.1	72
35	Occurrence, Source, and Human Infection Potential of Cryptosporidium and Giardia spp. in Source and Tap Water in Shanghai, China. Applied and Environmental Microbiology, 2011, 77, 3609-3616.	3.1	71
36	Zoonotic giardiasis: an update. Parasitology Research, 2021, 120, 4199-4218.	1.6	71

3

#	Article	IF	CITATIONS
37	Use of Semiconductor Quantum Dots for Photostable Immunofluorescence Labeling of Cryptosporidium parvum. Applied and Environmental Microbiology, 2004, 70, 5732-5736.	3.1	70
38	Genetic characterizations of Cryptosporidium spp. and Giardia duodenalis in humans in Henan, China. Experimental Parasitology, 2011, 127, 42-45.	1.2	70
39	Extended Outbreak of Cryptosporidiosis in a Pediatric Hospital, China. Emerging Infectious Diseases, 2012, 18, 312-314.	4.3	70
40	A facile route to violet- to orange-emitting Cd $<$ sub $>$ (i $>$ $<$ /sub $>$ Zn $<$ sub $>$ 1â $^{\circ}$ (i $>$ $<$ /sub $>$ Se alloy nanocrystals via cation exchange reaction. Nanotechnology, 2007, 18, 385606.	2.6	68
41	Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove. Applied Microbiology and Biotechnology, 2013, 97, 7919-7934.	3.6	66
42	Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics, 2016, 17, 1006.	2.8	63
43	Optimization of agitation, aeration, and temperature conditions for maximum \hat{l}^2 -mannanase production. Enzyme and Microbial Technology, 2003, 32, 282-289.	3.2	62
44	Genetic Recombination and <i>Cryptosporidium hominis </i> Virulent Subtype lbA10G2. Emerging Infectious Diseases, 2013, 19, 1573-82.	4.3	62
45	High intragenotypic diversity of Giardia duodenalis in dairy cattle on three farms. Parasitology Research, 2008, 103, 87-92.	1.6	61
46	Scalable Single-Step Noninjection Synthesis of High-Quality Core/Shell Quantum Dots with Emission Tunable from Violet to Near Infrared. ACS Nano, 2012, 6, 11066-11073.	14.6	61
47	Prevalence and characterization of Cryptosporidium spp. in dairy cattle in Nile River delta provinces, Egypt. Experimental Parasitology, 2013, 135, 518-523.	1.2	61
48	Cervine genotype is the major Cryptosporidium genotype in sheep in China. Parasitology Research, 2010, 106, 341-347.	1.6	60
49	Development of a Multilocus Sequence Tool for Typing <i>Cryptosporidium muris</i> and <i>Cryptosporidium andersoni</i> Journal of Clinical Microbiology, 2011, 49, 34-41.	3.9	60
50	Cryptosporidium parvum IId family: clonal population and dispersal from Western Asia to other geographical regions. Scientific Reports, 2014, 4, 4208.	3.3	58
51	Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. International Journal for Parasitology, 2017, 47, 281-290.	3.1	58
52	Subtypes of Cryptosporidium spp. in mice and other small mammals. Experimental Parasitology, 2011, 127, 238-242.	1.2	57
53	Identity and public health potential of Cryptosporidium spp. in water buffalo calves in Egypt. Veterinary Parasitology, 2013, 191, 123-127.	1.8	57
54	Subtyping Novel Zoonotic Pathogen Cryptosporidium Chipmunk Genotype I. Journal of Clinical Microbiology, 2015, 53, 1648-1654.	3.9	57

#	Article	IF	CITATIONS
55	Dominance of Giardia duodenalis assemblage A and Enterocytozoon bieneusi genotype BEB6 in sheep in Inner Mongolia, China. Veterinary Parasitology, 2015, 210, 235-239.	1.8	57
56	Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents. Journal of Water and Health, 2016, 14, 411-423.	2.6	56
57	Molecular Epidemiology of Human Cryptosporidiosis in Low- and Middle-Income Countries. Clinical Microbiology Reviews, 2021, 34, .	13.6	56
58	Prevalence and genotypic identification of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in pre-weaned dairy calves in Guangdong, China. Parasites and Vectors, 2019, 12, 41.	2.5	55
59	Population genetic analysis of Enterocytozoon bieneusi in humans. International Journal for Parasitology, 2012, 42, 287-293.	3.1	54
60	Common occurrence of a unique Cryptosporidium ryanae variant in zebu cattle and water buffaloes in the buffer zone of the Chitwan National Park, Nepal. Veterinary Parasitology, 2012, 185, 309-314.	1.8	53
61	Distribution of Cryptosporidium species in Tibetan sheep and yaks in Qinghai, China. Veterinary Parasitology, 2016, 215, 58-62.	1.8	52
62	Effect of Particles on the Recovery of Cryptosporidium Oocysts from Source Water Samples of Various Turbidities. Applied and Environmental Microbiology, 2003, 69, 1898-1903.	3.1	51
63	Nonhydrolytic Alcoholysis Route to Morphology-Controlled ZnO Nanocrystals. Small, 2007, 3, 1194-1199.	10.0	51
64	Longitudinal monitoring of Cryptosporidium species in pre-weaned dairy calves on five farms in Shanghai, China. Veterinary Parasitology, 2017, 241, 14-19.	1.8	51
65	Environmental Transport of Emerging Human-Pathogenic Cryptosporidium Species and Subtypes through Combined Sewer Overflow and Wastewater. Applied and Environmental Microbiology, 2017, 83, .	3.1	50
66	Improvement of recoveries for the determination of protozoa Cryptosporidium and Giardia in water using method 1623. Journal of Microbiological Methods, 2004, 58, 321-325.	1.6	49
67	Cryptosporidium in wild placental mammals. Experimental Parasitology, 2010, 124, 128-137.	1.2	49
68	Prevalence and distribution of Cryptosporidium spp. in dairy cattle in Heilongjiang Province, China. Parasitology Research, 2009, 105, 797-802.	1.6	48
69	Multilocus Sequence Typing of an Emerging Cryptosporidium hominis Subtype in the United States. Journal of Clinical Microbiology, 2014, 52, 524-530.	3.9	47
70	Potential impacts of host specificity on zoonotic or interspecies transmission of Enterocytozoon bieneusi. Infection, Genetics and Evolution, 2019, 75, 104033.	2.3	47
71	Isolation and Enrichment of Cryptosporidium DNA and Verification of DNA Purity for Whole-Genome Sequencing. Journal of Clinical Microbiology, 2015, 53, 641-647.	3.9	45
72	Population genetics of Cryptosporidium meleagridis in humans and birds: evidence for cross-species transmission. International Journal for Parasitology, 2014, 44, 515-521.	3.1	44

#	Article	IF	Citations
73	Molecular Characterization of Echinococcus granulosus Sensu Lato from Farm Animals in Egypt. PLoS ONE, 2015, 10, e0118509.	2.5	44
74	MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection. International Journal for Parasitology, 2011, 41, 397-403.	3.1	43
75	Identity of Fasciola spp. in sheep in Egypt. Parasites and Vectors, 2016, 9, 623.	2.5	42
76	Comparative genomics reveals Cyclospora cayetanensis possesses coccidia-like metabolism and invasion components but unique surface antigens. BMC Genomics, 2016, 17, 316.	2.8	42
77	Genetic similarities between Cyclospora cayetanensis and cecum-infecting avian Eimeria spp. in apicoplast and mitochondrial genomes. Parasites and Vectors, 2015, 8, 358.	2.5	40
78	Molecular characterization of Cryptosporidium spp. and Giardia duodenalis in children in Egypt. Parasites and Vectors, 2018, 11, 403.	2.5	40
79	Periparturient transmission of Cryptosporidium xiaoi from ewes to lambs. Veterinary Parasitology, 2013, 197, 627-633.	1.8	39
80	Outbreak of cryptosporidiosis due to Cryptosporidium parvum subtype IIdA19G1 in neonatal calves on a dairy farm in China. International Journal for Parasitology, 2019, 49, 569-577.	3.1	39
81	Non-coding RNAs in epithelial immunity to <i>Cryptosporidium</i> infection. Parasitology, 2014, 141, 1233-1243.	1.5	38
82	Multilocus Sequence Typing Tool for <i>Cyclospora cayetanensis</i> . Emerging Infectious Diseases, 2016, 22, 1464-1467.	4.3	38
83	Enterocytozoon bieneusi genotypes in Tibetan sheep and yaks. Parasitology Research, 2018, 117, 721-727.	1.6	37
84	Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major human-infecting species. BMC Genomics, 2019, 20, 406.	2.8	37
85	Cryptosporidium myocastoris n. sp. (Apicomplexa: Cryptosporidiidae), the Species Adapted to the Nutria (Myocastor coypus). Microorganisms, 2021, 9, 813.	3.6	35
86	Multilocus Sequence Subtyping and Genetic Structure of Cryptosporidium muris and Cryptosporidium andersoni. PLoS ONE, 2012, 7, e43782.	2.5	35
87	Cryptosporidium species and Cryptosporidium parvum subtypes in dairy calves and goat kids reared under traditional farming systems in Turkey. Experimental Parasitology, 2016, 170, 16-20.	1.2	34
88	Occurrence and molecular characterization of Cryptosporidium spp. in yaks (Bos grunniens) in China. Veterinary Parasitology, 2014, 202, 113-118.	1.8	33
89	Molecular characterization of the Cryptosporidium cervine genotype from a sika deer (Cervus nippon) Tj ETQq1 🛚	l 0,78431 1.6	4 rgBT /Over
90	Identification and morphologic and molecular characterization of Cyclospora macacae n. sp. from rhesus monkeys in China. Parasitology Research, 2015, 114, 1811-1816.	1.6	32

#	Article	IF	Citations
91	Multilocus genotyping of Giardia duodenalis in Tibetan sheep and yaks in Qinghai, China. Veterinary Parasitology, 2017, 247, 70-76.	1.8	32
92	Genetic diversity within dominant Enterocytozoon bieneusi genotypes in pre-weaned calves. Parasites and Vectors, 2018, 11, 170.	2.5	32
93	Anti-Toxoplasma gondii activity of GAS in vitro. Journal of Ethnopharmacology, 2008, 118, 503-507.	4.1	31
94	Detection of <i>Toxoplasma gondii</i> Oocysts in Water Sample Concentrates by Real-Time PCR. Applied and Environmental Microbiology, 2009, 75, 3477-3483.	3.1	31
95	High genetic diversity of Giardia duodenalis assemblage E in pre-weaned dairy calves in Shanghai, China, revealed by multilocus genotyping. Parasitology Research, 2017, 116, 2101-2110.	1.6	31
96	Multilocus phylogenetic analysis of Cryptosporidium andersoni (Apicomplexa) isolated from a bactrian camel (Camelus bactrianus) in China. Parasitology Research, 2008, 102, 915-920.	1.6	30
97	Zoonotic Cryptosporidium species and subtypes in lambs and goat kids in Algeria. Parasites and Vectors, 2018, 11, 582.	2.5	30
98	Infection patterns, clinical significance, and genetic characteristics of Enterocytozoon bieneusi and Giardia duodenalis in dairy cattle in Jiangsu, China. Parasitology Research, 2019, 118, 3053-3060.	1.6	30
99	Epidemiological distribution of genotypes of Giardia duodenalis in humans in Spain. Parasites and Vectors, 2019, 12, 432.	2.5	29
100	Diagnosis and molecular typing of Enterocytozoon bieneusi: the significant role of domestic animals in transmission of human microsporidiosis. Research in Veterinary Science, 2020, 133, 251-261.	1.9	29
101	<i>Enterocytozoon bieneusi</i> Genotypes in Yaks (<i>Bos grunniens</i> and Their Public Health Potential. Journal of Eukaryotic Microbiology, 2015, 62, 21-25.	1.7	28
102	Genetic characterization of Cryptosporidium spp. and Giardia duodenalis in dogs and cats in Guangdong, China. Parasites and Vectors, 2019, 12, 571.	2.5	28
103	Small ruminants and zoonotic cryptosporidiosis. Parasitology Research, 2021, 120, 4189-4198.	1.6	28
104	Development and Evaluation of Three Real-Time PCR Assays for Genotyping and Source Tracking Cryptosporidium spp. in Water. Applied and Environmental Microbiology, 2015, 81, 5845-5854.	3.1	27
105	Ginkgolide B ameliorates oxidized lowâ€density lipoproteinâ€induced endothelial dysfunction via modulating Lectinâ€like oxâ€LDLâ€receptorâ€1 and NADPH oxidase 4 expression and inflammatory cascades. Phytotherapy Research, 2018, 32, 2417-2427.	5.8	27
106	Strong optical limiting capability of a triosmium cluster bonded indium porphyrin complex [(TPP)InOs3(μ-H)2(CO)9(μ-η2-C5H4N)]. Chemical Communications, 2003, , 1882-1883.	4.1	26
107	Epidemiological observations on cryptosporidiosis and molecular characterization of Cryptosporidium spp. in sheep and goats in Kuwait. Parasitology Research, 2018, 117, 1631-1636.	1.6	26
108	Cryptosporidium parvum and Cryptosporidium hominis subtypes in crab-eating macaques. Parasites and Vectors, 2019, 12, 350.	2.5	26

#	Article	IF	Citations
109	Preliminary Molecular Characterizations of Sarcoptes scaibiei (Acari: Sarcoptidae) from Farm Animals in Egypt. PLoS ONE, 2014, 9, e94705.	2.5	25
110	Genotypes and subtypes of Cryptosporidium spp. in diarrheic lambs and goat kids in northern Greece. Parasitology International, 2018, 67, 472-475.	1.3	25
111	<i>Cryptosporidium ratti</i> n. sp. (Apicomplexa: Cryptosporidiidae) and genetic diversity of <i>Cryptosporidium</i> spp. in brown rats (<i>Rattus norvegicus</i>) in the Czech Republic. Parasitology, 2021, 148, 84-97.	1.5	24
112	Emergence of zoonotic Cryptosporidium parvum in China. Trends in Parasitology, 2022, 38, 335-343.	3.3	24
113	Molecular characterization of a new genotype of Cryptosporidium from American minks (Mustela) Tj ETQq1 1 C).784314 r 1.8	gBT_/Overloc
114	Subtype analysis of zoonotic pathogen Cryptosporidium skunk genotype. Infection, Genetics and Evolution, 2017, 55, 20-25.	2.3	22
115	Genotypes and public health potential of Enterocytozoon bieneusi and Giardia duodenalis in crab-eating macaques. Parasites and Vectors, 2019, 12, 254.	2.5	22
116	Characterization of polycyclic aromatic hydrocarbons degradation and arsenate reduction by a versatile Pseudomonas isolate. International Biodeterioration and Biodegradation, 2014, 90, 79-87.	3.9	21
117	Divergent Cryptosporidium parvum subtype and Enterocytozoon bieneusi genotypes in dromedary camels in Algeria. Parasitology Research, 2018, 117, 905-910.	1.6	21
118	Different distribution of Cryptosporidium species between horses and donkeys. Infection, Genetics and Evolution, 2019, 75, 103954.	2.3	21
119	Crystallographic characterization of the intermediate in the synthesis of tetrazole from nitrile and azide in water. Inorganic Chemistry Communication, 2004, 7, 492-494.	3.9	20
120	Zoonotic potential of Enterocytozoon bieneusi and Giardia duodenalis in horses and donkeys in northern China. Parasitology Research, 2020, 119, 1101-1108.	1.6	20
121	Development of a Subtyping Tool for Zoonotic Pathogen <i>Cryptosporidium canis</i> . Journal of Clinical Microbiology, 2021, 59, .	3.9	20
122	The importance of subtype analysis of Cryptosporidium spp. in epidemiological investigations of human cryptosporidiosis in Iran and other Mideast countries. Gastroenterology and Hepatology From Bed To Bench, 2012, 5, 67-70.	0.6	20
123	Subtype distribution of zoonotic pathogen <i>Cryptosporidium felis</i> in humans and animals in several countries. Emerging Microbes and Infections, 2020, 9, 2446-2454.	6.5	19
124	Molecular characterization and zoonotic potential of Enterocytozoon bieneusi, Giardia duodenalis and Cryptosporidium sp. in farmed masked palm civets (Paguma larvata) in southern China. Parasites and Vectors, 2020, 13, 403.	2.5	19
125	Common occurrence of divergent Cryptosporidium species and Cryptosporidium parvum subtypes in farmed bamboo rats (Rhizomys sinensis). Parasites and Vectors, 2020, 13, 149.	2.5	19
126	Characterization of a Species-Specific Insulinase-Like Protease in Cryptosporidium parvum. Frontiers in Microbiology, 2019, 10, 354.	3.5	18

#	Article	IF	CITATIONS
127	Subtyping Cryptosporidium ryanae: A Common Pathogen in Bovine Animals. Microorganisms, 2020, 8, 1107.	3.6	18
128	Kinetics of beta-mannanase fermentation by Bacillus licheniformis. Biotechnology Letters, 2003, 25, 1143-1146.	2.2	17
129	Dominant genera of cyanobacteria in Lake Taihu and their relationships with environmental factors. Journal of Microbiology, 2016, 54, 468-476.	2.8	17
130	Genotypes of <i>Cryptosporidium</i> spp. and <i>Enterocytozoon bieneusi</i> in Human Immunodeficiency Virusâ€Infected Patients in Lagos, Nigeria. Journal of Eukaryotic Microbiology, 2016, 63, 414-418.	1.7	17
131	Comparative genomics: how has it advanced our knowledge of cryptosporidiosis epidemiology?. Parasitology Research, 2019, 118, 3195-3204.	1.6	17
132	Host-adapted Cryptosporidium and Enterocytozoon bieneusi genotypes in straw-colored fruit bats in Nigeria. International Journal for Parasitology: Parasites and Wildlife, 2019, 8, 19-24.	1.5	17
133	Molecular characterization of the waterborne pathogens Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, Cyclospora cayetanensis and Eimeria spp. in wastewater and sewage in Guangzhou, China. Parasites and Vectors, 2021, 14, 66.	2.5	17
134	Photoreactivation of Escherichia coli following medium-pressure ultraviolet disinfection and its control using chloramination. Water Science and Technology, 2006, 53, 123-129.	2.5	16
135	Preliminary Characterization of MEDLE-2, a Protein Potentially Involved in the Invasion of Cryptosporidium parvum. Frontiers in Microbiology, 2017, 8, 1647.	3.5	16
136	Characterization of INS-15, A Metalloprotease Potentially Involved in the Invasion of Cryptosporidium parvum. Microorganisms, 2019, 7, 452.	3.6	16
137	Enterocytozoon bieneusi. Trends in Parasitology, 2022, 38, 95-96.	3.3	16
138	Population structure and geographical segregation of Cryptosporidium parvum IId subtypes in cattle in China. Parasites and Vectors, 2020, 13, 425.	2.5	15
139	Influence of an arsenate-reducing and polycyclic aromatic hydrocarbons-degrading Pseudomonas isolate on growth and arsenic accumulation in Pteris vittata L. and removal of phenanthrene. International Biodeterioration and Biodegradation, 2014, 94, 12-18.	3.9	14
140	Development of a multilocus sequence typing tool for high-resolution subtyping and genetic structure characterization of Cryptosporidium ubiquitum. Infection, Genetics and Evolution, 2016, 45, 256-261.	2.3	14
141	Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum. Parasites and Vectors, 2018, 11, 312.	2.5	14
142	90-Kilodalton Heat Shock Protein, Hsp90, as a Target for Genotyping <i>Cryptosporidium</i> spp. Known To Infect Humans. Eukaryotic Cell, 2009, 8, 478-482.	3.4	13
143	Persistent Occurrence of Cryptosporidium hominis and Giardia duodenalis Subtypes in a Welfare Institute. Frontiers in Microbiology, 2018, 9, 2830.	3.5	13
144	Mitochondrial genome sequence variation as a useful marker for assessing genetic heterogeneity among Cyclospora cayetanensis isolates and source-tracking. Parasites and Vectors, 2019, 12, 47.	2.5	13

#	Article	IF	CITATIONS
145	Codon usage analysis of zoonotic coronaviruses reveals lower adaptation to humans by SARS-CoV-2. Infection, Genetics and Evolution, 2021, 89, 104736.	2.3	13
146	Advances in molecular epidemiology of cryptosporidiosis in dogs and cats. International Journal for Parasitology, 2021, 51, 787-795.	3.1	13
147	Comparative genomic analysis of three intestinal species reveals reductions in secreted pathogenesis determinants in bovine-specific and non-pathogenic Cryptosporidium species. Microbial Genomics, 2020, 6, .	2.0	13
148	Synthesis and characterization of [Ga(TPP)H] (TPP=tetraphenylporphyrinato). Inorganic Chemistry Communication, 2003, 6, 466-468.	3.9	12
149	Contribution of hospitals to the occurrence of enteric protists in urban wastewater. Parasitology Research, 2020, 119, 3033-3040.	1.6	12
150	Molecular analysis of cryptosporidiosis cases in Western Australia in 2019 and 2020 supports the occurrence of two swimming pool associated outbreaks and reveals the emergence of a rare C. hominis lbA12G3 subtype. Infection, Genetics and Evolution, 2021, 92, 104859.	2.3	12
151	Population genetic characterization of Cyclospora cayetanensis from discrete geographical regions. Experimental Parasitology, 2018, 184, 121-127.	1.2	11
152	Differential Expression of Three Cryptosporidium Species-Specific MEDLE Proteins. Frontiers in Microbiology, 2019, 10, 1177.	3.5	11
153	Cryptosporidiosis outbreak caused by <i>Cryptosporidium parvum</i> subtype IldA20G1 in neonatal calves. Transboundary and Emerging Diseases, 2022, 69, 278-285.	3.0	11
154	Cryptosporidial Infection Suppresses Intestinal Epithelial Cell MAPK Signaling Impairing Host Anti-Parasitic Defense. Microorganisms, 2021, 9, 151.	3.6	11
155	Subtyping Cryptosporidium xiaoi, a Common Pathogen in Sheep and Goats. Pathogens, 2021, 10, 800.	2.8	11
156	New strategy for band-gap tuning in semiconductor nanocrystals. Research on Chemical Intermediates, 2008, 34, 287-298.	2.7	10
157	Simultaneous biodegradation of phenanthrene and oxidation of arsenite by a dual-functional bacterial consortium. International Biodeterioration and Biodegradation, 2013, 82, 173-179.	3.9	10
158	Impact of mcr-1 on the Development of High Level Colistin Resistance in Klebsiella pneumoniae and Escherichia coli. Frontiers in Microbiology, 2021, 12, 666782.	3.5	10
159	Insulinase-like Protease 1 Contributes to Macrogamont Formation in Cryptosporidium parvum. MBio, 2021, 12, .	4.1	10
160	Sympatric Recombination in Zoonotic Cryptosporidium Leads to Emergence of Populations with Modified Host Preference. Molecular Biology and Evolution, 2022, 39, .	8.9	10
161	Characterizations of Enterocytozoon bieneusi at new genetic loci reveal a lack of strict host specificity among common genotypes and the existence of a canine-adapted Enterocytozoon species. International Journal for Parasitology, 2021, 51, 215-223.	3.1	9
162	Occurrence and genetic diversity of Cryptosporidium spp. in wild foxes, wolves, jackals, and bears in central Europe. Folia Parasitologica, 2021, 68, .	1.3	9

#	Article	IF	CITATIONS
163	Zoonotic parasites in farmed exotic animals in China: Implications to public health. International Journal for Parasitology: Parasites and Wildlife, 2021, 14, 241-247.	1.5	9
164	Correlation Between ABCA1 Gene Polymorphism and aopA-I and HDL-C in Abdominal Aortic Aneurysm. Medical Science Monitor, 2016, 22, 172-176.	1.1	9
165	Cryptosporidium Species and C. parvum Subtypes in Farmed Bamboo Rats. Pathogens, 2020, 9, 1018.	2.8	8
166	Characterization of Calcium-Dependent Protein Kinases 3, a Protein Involved in Growth of Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 907.	3.5	8
167	Subtype Characterization and Zoonotic Potential of Cryptosporidium felis in Cats in Guangdong and Shanghai, China. Pathogens, 2021, 10, 89.	2.8	8
168	Immunology of Cryptosporidiosis. , 2014, , 423-454.		8
169	Development and Application of a gp60-Based Subtyping Tool for Cryptosporidium bovis. Microorganisms, 2021, 9, 2067.	3.6	8
170	Diarrhoea outbreak caused by coinfections of <i>Cryptosporidium parvum</i> subtype IIdA20G1 and rotavirus in preâ€weaned dairy calves. Transboundary and Emerging Diseases, 2022, 69, .	3.0	8
171	Population genetic analysis suggests genetic recombination is responsible for increased zoonotic potential of Enterocytozoon bieneusi from ruminants in China. One Health, 2020, 11, 100184.	3.4	7
172	Expression and Functional Studies of INS-5, an Insulinase-Like Protein in Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 719.	3.5	7
173	A productive immunocompetent mouse model of cryptosporidiosis with long oocyst shedding duration for immunological studies. Journal of Infection, 2022, 84, 710-721.	3.3	7
174	Characterization of Three Calcium-Dependent Protein Kinases of Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 622203.	3.5	6
175	Association of Common Zoonotic Pathogens With Concentrated Animal Feeding Operations. Frontiers in Microbiology, 2021, 12, 810142.	3.5	6
176	A new method of preparation of iron(II) porphyrin complexesâ€"isolation and characterization of amine complexes of ferrous porphyrin. Polyhedron, 1996, 15, 2677-2679.	2.2	5
177	Alternative Immunofluorescent Labeling of <i>Cryptosporidium parvum</i> in Water Samples Using Semiconductor Quantum Dots. Water Environment Research, 2008, 80, 725-731.	2.7	5
178	Genetic characterizations of Cryptosporidium spp. from pet rodents indicate high zoonotic potential of pathogens from chinchillas. One Health, 2021, 13, 100269.	3.4	5
179	Comparative Characterization of CpCDPK1 and CpCDPK9, Two Potential Drug Targets Against Cryptosporidiosis. Microorganisms, 2022, 10, 333.	3.6	5
180	High zoonotic potential of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in wild nonhuman primates from Yunnan Province, China. Parasites and Vectors, 2022, 15, 85.	2.5	5

#	Article	IF	CITATIONS
181	Aqua(nitrilotriacetato)(1,10-phenanthroline)iron(III) monohydrate: a seven-coordinate iron(III) complex. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m34-m35.	0.4	4
182	Catalytic N ₂ O decomposition over CeMeO _y ∫γâ€Al ₂ O ₃ (MeÂ=ÂMn, Cu, Zn) catalysts prepared by impregnation method. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2233.	1.5	4
183	Divergent Copies of a Cryptosporidium parvum-Specific Subtelomeric Gene. Microorganisms, 2019, 7, 366.	3.6	4
184	Occurrence and molecular characterization of Giardia duodenalis in lambs in Djelfa, the central steppe of Algeria. Parasitology Research, 2020, 119, 2965-2973.	1.6	4
185	Molecular detection of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in school children at the Thai-Myanmar border. Parasitology Research, 2021, 120, 2887-2895.	1.6	4
186	Genus-level evolutionary relationships of FAR proteins reflect the diversity of lifestyles of free-living and parasitic nematodes. BMC Biology, 2021, 19, 178.	3.8	4
187	Tetraaquabis[5-(4-pyridylN-oxide)tetrazolato-κN2]cadmium: the intermediate in the synthesis of a tetrazole from a nitrile and an azide. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, m194-m196.	0.4	3
188	Morphologic and Genotypic Characterization of Psoroptes Mites from Water Buffaloes in Egypt. PLoS ONE, 2015, 10, e0141554.	2.5	3
189	Comparative Study of Two Insulinlike Proteases in Cryptosporidium parvum. Microorganisms, 2021, 9, 861.	3.6	3
190	Preliminary Characterization of Two Small Insulinase-Like Proteases in Cryptosporidium parvum. Frontiers in Microbiology, 2021, 12, 651512.	3.5	3
191	Molecular detection of a novel Ancylostoma sp. by whole mtDNA sequence from pangolin Manis javanica. Parasites and Vectors, 2022, 15, 70.	2.5	3
192	Age and episodeâ€associated occurrence of <i>Cryptosporidium</i> species and subtypes in a birthâ€cohort of dairy calves. Transboundary and Emerging Diseases, 2022, 69, .	3.0	3
193	Cryptosporidium felis differs from other Cryptosporidium spp. in codon usage. Microbial Genomics, 2021, 7, .	2.0	3
194	Characterization of Dense Granule Metalloproteinase INS-16 in Cryptosporidium parvum. International Journal of Molecular Sciences, 2022, 23, 7617.	4.1	3
195	Inactivation of particle-associated viruses by UV. Journal of Water Supply: Research and Technology - AQUA, 2007, 56, 393-397.	1.4	2
196	Multilocus sequence typing of Enterocytozoon bieneusi in crab-eating macaques (Macaca) Tj ETQq0 0 0 rgBT /C	Overlock 1	0 Tf ₂ 50 142 To
197	Characterization of Calcium-Dependent Protein Kinase 2A, a Potential Drug Target Against Cryptosporidiosis. Frontiers in Microbiology, 2022, 13, 883674.	3.5	2
198	Decline in Cryptosporidium Infection in Free-Ranging Rhesus Monkeys in a Park After Public Health Interventions. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	2

YAO-YU FENG

#	Article	IF	CITATIONS
199	Identification and Characterization of Three Spore Wall Proteins of Enterocytozoon Bieneusi. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	1
200	A semantic image retrieval approach between visual features and medical concepts. Proceedings of SPIE, 2009, , .	0.8	0