Pedro A Lazo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1915208/publications.pdf

Version: 2024-02-01

76196 25716 12,316 133 40 citations h-index papers

g-index 137 137 137 23510 docs citations times ranked citing authors all docs

108

#	Article	IF	CITATIONS
1	Pathogenic convergence of CNVs in genes functionally associated to a severe neuromotor developmental delay syndrome. Human Genomics, 2021, 15, 11.	1.4	3
2	The human VRK1 chromatin kinase in cancer biology. Cancer Letters, 2021, 503, 117-128.	3.2	30
3	VRK1 Depletion Facilitates the Synthetic Lethality of Temozolomide and Olaparib in Glioblastoma Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 683038.	1.8	9
4	Lysine Methyltransferase Inhibitors Impair H4K20me2 and 53BP1 Foci in Response to DNA Damage in Sarcomas, a Synthetic Lethality Strategy. Frontiers in Cell and Developmental Biology, 2021, 9, 715126.	1.8	5
5	Dysfunctional Homozygous VRK1-D263G Variant Impairs the Assembly of Cajal Bodies and DNA Damage Response in Hereditary Spastic Paraplegia. Neurology: Genetics, 2021, 7, e624.	0.9	2
6	VRK1 Phosphorylates Tip60/KAT5 and Is Required for H4K16 Acetylation in Response to DNA Damage. Cancers, 2020, 12, 2986.	1.7	17
7	VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy. Annals of Clinical and Translational Neurology, 2020, 7, 808-818.	1.7	8
8	Novel Dominant KCNQ2 Exon 7 Partial In-Frame Duplication in a Complex Epileptic and Neurodevelopmental Delay Syndrome. International Journal of Molecular Sciences, 2020, 21, 4447.	1.8	5
9	VRK1 functional insufficiency due to alterations in protein stability or kinase activity of human VRK1 pathogenic variants implicated in neuromotor syndromes. Scientific Reports, 2019, 9, 13381.	1.6	21
10	Olaparib and ionizing radiation trigger a cooperative DNA-damage repair response that is impaired by depletion of the VRK1 chromatin kinase. Journal of Experimental and Clinical Cancer Research, 2019, 38, 203.	3 . 5	23
11	Implication of the VRK1 chromatin kinase in the signaling responses to DNA damage: a therapeutic target?. Cellular and Molecular Life Sciences, 2018, 75, 2375-2388.	2.4	33
12	VRK1 and AURKB form a complex that cross inhibit their kinase activity and the phosphorylation of histone H3 in the progression of mitosis. Cellular and Molecular Life Sciences, 2018, 75, 2591-2611.	2.4	32
13	CD53., 2018,, 930-937.		O
14	VRK3., 2018,, 5973-5976.		0
15	VRK2. , 2018, , 5965-5973.		0
16	VRK1., 2018,, 5955-5965.		0
17	Is Centrosomal Protein 70, a Centrosomal Protein with New Roles in Breast Cancer Dissemination and Metastasis, a Facilitator of Epithelial-Mesenchymal Transition?. American Journal of Pathology, 2017, 187, 494-497.	1.9	3
18	Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cellular Signalling, 2017, 33, 49-58.	1.7	35

#	Article	lF	Citations
19	VRK1., 2017, , 1-11.		5
20	VRK2., 2017,, 1-9.		0
21	VRK3., 2017, , 1-4.		0
22	VRK2., 2016,, 1-9.		0
23	Oncogenic Sox2 regulates and cooperates with VRK1 in cell cycle progression and differentiation. Scientific Reports, 2016, 6, 28532.	1.6	14
24	VRK1 phosphorylates and protects NBS1 from ubiquitination and proteasomal degradation in response to DNA damage. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 760-769.	1.9	31
25	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
26	CD53., 2016, , 1-7.		0
27	VRK1., 2016, , 1-11.		0
28	The Spinal Muscular Atrophy with Pontocerebellar Hypoplasia Gene <i>VRK1</i> Regulates Neuronal Migration through an Amyloid-β Precursor Protein-Dependent Mechanism. Journal of Neuroscience, 2015, 35, 936-942.	1.7	36
29	VRK1 chromatin kinase phosphorylates H2AX and is required for foci formation induced by DNA damage. Epigenetics, 2015, 10, 373-383.	1.3	54
30	VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle. Scientific Reports, 2015, 5, 10543.	1.6	33
31	Vaccinia-related kinase 1 (VRK1) confers resistance to DNA-damaging agents in human breast cancer by affecting DNA damage response. Oncotarget, 2014, 5, 1770-1778.	0.8	41
32	VRK1 interacts with p53 forming a basal complex that is activated by UVâ€induced DNA damage. FEBS Letters, 2014, 588, 692-700.	1.3	35
33	Gene amplification of the histone methyltransferase SETDB1 contributes to human lung tumorigenesis. Oncogene, 2014, 33, 2807-2813.	2.6	126
34	VRK2 identifies a subgroup of primary high-grade astrocytomas with a better prognosis. BMC Clinical Pathology, 2013, 13, 23.	1.8	12
35	Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals. Journal of Biological Inorganic Chemistry, 2013, 18, 473-482.	1.1	13
36	Human JC polyomavirus in normal colorectal mucosa, hyperplastic polyps, sporadic adenomas, and adenocarcinomas in Portugal. Journal of Medical Virology, 2013, 85, 2119-2127.	2.5	32

#	Article	IF	CITATIONS
37	Human VRK2 modulates apoptosis by interaction with Bcl-xL and regulation of BAX gene expression. Cell Death and Disease, 2013, 4, e513-e513.	2.7	54
38	Vaccinia-related Kinase 1 (VRK1) Is an Upstream Nucleosomal Kinase Required for the Assembly of 53BP1 Foci in Response to Ionizing Radiation-induced DNA Damage. Journal of Biological Chemistry, 2012, 287, 23757-23768.	1.6	50
39	Human VRK2 (Vaccinia-related Kinase 2) Modulates Tumor Cell Invasion by Hyperactivation of NFAT1 and Expression of Cyclooxygenase-2. Journal of Biological Chemistry, 2012, 287, 42739-42750.	1.6	34
40	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
41	VRK2 anchors KSR1-MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling. Cellular and Molecular Life Sciences, 2012, 69, 3881-3893.	2.4	27
42	Vaccinia-Related Kinase 2., 2012,, 1955-1955.		0
43	Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications. Journal of Proteomics, 2011, 75, 548-560.	1.2	37
44	Roles of VRK1 as a new player in the control of biological processes required for cell division. Cellular Signalling, 2011, 23, 1267-1272.	1.7	78
45	Interference with p53 functions in human viral infections, a target for novel antiviral strategies?. Reviews in Medical Virology, 2011, 21, 285-300.	3.9	29
46	Downregulation of VRK1 by p53 in Response to DNA Damage Is Mediated by the Autophagic Pathway. PLoS ONE, 2011, 6, e17320.	1.1	49
47	Differential Inhibitor Sensitivity between Human Kinases VRK1 and VRK2. PLoS ONE, 2011, 6, e23235.	1.1	39
48	Cancer as a reprogramming-like disease: Implications in tumor development and treatment. Seminars in Cancer Biology, 2010, 20, 93-97.	4.3	39
49	VRK2 Inhibits Mitogen-Activated Protein Kinase Signaling and Inversely Correlates with ErbB2 in Human Breast Cancer. Molecular and Cellular Biology, 2010, 30, 4687-4697.	1.1	37
50	JC virus in the pathogenesis of colorectal cancer, an etiological agent or another component in a multistep process?. Virology Journal, 2010, 7, 42.	1.4	46
51	The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancerâ€. Human Molecular Genetics, 2009, 18, 1343-1352.	1.4	99
52	Plk3 Interacts with and Specifically Phosphorylates VRK1 in Ser ³⁴² , a Downstream Target in a Pathway That Induces Golgi Fragmentation. Molecular and Cellular Biology, 2009, 29, 1189-1201.	1.1	57
53	Emerging biological functions of the vaccinia-related kinase (VRK) family. Histology and Histopathology, 2009, 24, 749-59.	0.5	51
54	A Central Role for CK1 in Catalyzing Phosphorylation of the p53 Transactivation Domain at Serine 20 after HHV-6B Viral Infection. Journal of Biological Chemistry, 2008, 283, 28563-28573.	1.6	35

#	Article	IF	Citations
55	Proteomics Identification of Nuclear Ran GTPase as an Inhibitor of Human VRK1 and VRK2 (Vaccinia-related Kinase) Activities. Molecular and Cellular Proteomics, 2008, 7, 2199-2214.	2.5	53
56	Human VRK1 Is an Early Response Gene and Its Loss Causes a Block in Cell Cycle Progression. PLoS ONE, 2008, 3, e1642.	1.1	90
57	The C/H3 Domain of p300 Is Required to Protect VRK1 and VRK2 from their Downregulation Induced by p53. PLoS ONE, 2008, 3, e2649.	1.1	28
58	Modulation of Interleukin-1 Transcriptional Response by the Interaction between VRK2 and the JIP1 Scaffold Protein. PLoS ONE, 2008, 3, e1660.	1.1	62
59	VRK1 (Vaccinia-related kinase 1). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2008, , .	0.1	0
60	Vaccinia-Related Kinase 2 Modulates the Stress Response to Hypoxia Mediated by TAK1. Molecular and Cellular Biology, 2007, 27, 7273-7283.	1.1	65
61	Identification of a dominant epitope in human vaccinia-related kinase 1 (VRK1) and detection of different intracellular subpopulations. Archives of Biochemistry and Biophysics, 2007, 465, 219-226.	1.4	49
62	Alteration of the VRK1-p53 autoregulatory loop in human lung carcinomas. Lung Cancer, 2007, 58, 303-309.	0.9	40
63	Functional implications of tetraspanin proteins in cancer biology. Cancer Science, 2007, 98, 1666-1677.	1.7	105
64	The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS Journal, 2006, 273, 2487-2504.	2.2	72
65	Vaccinia Virus B1R Kinase Interacts with JIP1 and Modulates c-Jun-Dependent Signaling. Journal of Virology, 2006, 80, 7667-7675.	1.5	26
66	p53 Downregulates Its Activating Vaccinia-Related Kinase 1, Forming a New Autoregulatory Loop. Molecular and Cellular Biology, 2006, 26, 4782-4793.	1.1	54
67	VRK1 Signaling Pathway in the Context of the Proliferation Phenotype in Head and Neck Squamous Cell Carcinoma. Molecular Cancer Research, 2006, 4, 177-185.	1.5	78
68	Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia, 2005, 19, 1376-1383.	3.3	146
69	Discrimination of biclonal B-cell chronic lymphoproliferative neoplasias by tetraspanin antigen expression. Leukemia, 2005, 19, 1708-1709.	3.3	15
70	p53 Stabilization and Accumulation Induced by Human Vaccinia-Related Kinase 1. Molecular and Cellular Biology, 2004, 24, 10366-10380.	1.1	125
71	Human Vaccinia-related Kinase 1 (VRK1) Activates the ATF2 Transcriptional Activity by Novel Phosphorylation on Thr-73 and Ser-62 and Cooperates with JNK. Journal of Biological Chemistry, 2004, 279, 27458-27465.	1.6	110
72	c-Jun phosphorylation by the human vaccinia-related kinase 1 (VRK1) and its cooperation with the N-terminal kinase of c-Jun (JNK). Oncogene, 2004, 23, 8950-8958.	2.6	100

#	Article	IF	CITATIONS
73	The vaccinia virus B1R kinase induces p53 downregulation by an Mdm2-dependent mechanism. Virology, 2004, 328, 254-265.	1.1	40
74	Tetraspanin proteins as organisers of membrane microdomains and signalling complexes. Cellular Signalling, 2003, 15, 559-564.	1.7	141
75	Human TSG101 does not replaceSaccharomyces cerevisiaeVPS23 role in the quality control of plasma membrane proteins. FEMS Microbiology Letters, 2003, 221, 151-154.	0.7	3
76	Induction of DNA synthesis by ligation of the CD53 tetraspanin antigen in primary cultures of mesangial cells. Kidney International, 2003, 63, 534-542.	2.6	8
77	Human papillomavirus DNA in cervical lesions from Morocco and its implications for cancer control. Clinical Microbiology and Infection, 2003, 9, 144-148.	2.8	18
78	Apoptosis protection and survival signal by the CD53 tetraspanin antigen. Oncogene, 2003, 22, 1219-1224.	2.6	61
79	Expression of the VRK (vaccinia-related kinase) gene family of p53 regulators in murine hematopoietic development. FEBS Letters, 2003, 544, 176-180.	1.3	60
80	Molecular detection of human papillomavirus in 594 uterine cervix samples from Moroccan women (147 biopsies and 447 swabs). Journal of Clinical Virology, 2003, 27, 286-295.	1.6	19
81	Role of Vesicle-Associated Membrane Protein-2, Through Q-Soluble <i>N</i> Factor Attachment Protein Receptor/R-Soluble <i>N</i> Frotein Receptor Interaction, in the Exocytosis of Specific and Tertiary Granules of Human Neutrophils. lournal of Immunology. 2003. 170. 1034-1042.	0.4	68
82	Kinetic Properties of p53 Phosphorylation by the Human Vaccinia-Related Kinase 1. Archives of Biochemistry and Biophysics, 2002, 399, 1-5.	1.4	51
83	Transient activation of the c-Jun N-terminal kinase (JNK) activity by ligation of the tetraspan CD53 antigen in different cell types. FEBS Journal, 2002, 269, 1012-1021.	0.2	19
84	Genomic organization, chromosomal localization, alternative splicing, and isoforms of the human synaptosome-associated protein-23 gene implicated in vesicle-membrane fusion processes. Human Genetics, 2001, 108, 211-215.	1.8	4
85	Differential Cooperation between Regulatory Sequences Required for Human CD53 Gene Expression. Journal of Biological Chemistry, 2001, 276, 35405-35413.	1.6	20
86	Papillomavirus vaccination for prevention and treatment of cervical carcinoma., 2001, 3, 231-240.		0
87	Loss of the TSG101 leucine zipper domain in aggressive non-Hodgkin's lymphomas. Leukemia, 2000, 14, 2014-2016.	3.3	1
88	The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Oncogene, 2000, 19, 3656-3664.	2.6	124
89	Amplification of human genomic sequences by human papillomaviruses universal consensus primers. Journal of Virological Methods, 2000, 87, 171-175.	1.0	8
90	Involvement of SNAP-23 and syntaxin 6 in human neutrophil exocytosis. Blood, 2000, 96, 2574-2583.	0.6	123

#	Article	IF	Citations
91	Involvement of SNAP-23 and syntaxin 6 in human neutrophil exocytosis. Blood, 2000, 96, 2574-2583.	0.6	5
92	Expression of a new isoform of the tumor susceptibility TSG101 protein lacking a leucine zipper domain in Burkitt lymphoma cell lines. Oncogene, 1999, 18, 2253-2259.	2.6	16
93	The molecular genetics of cervical carcinoma. British Journal of Cancer, 1999, 80, 2008-2018.	2.9	179
94	Expression of aberrant functional and nonfunctional transcripts of the FHIT gene in Burkitt's lymphomas., 1999, 25, 55-63.		8
95	Co-expression of several human syntaxin genes in neutrophils and differentiating HL-60 cells: variant isoforms and detection of syntaxin 1. Journal of Leukocyte Biology, 1999, 65, 397-406.	1.5	42
96	Tetraspan transmembrane antigen levels in Burkitt lymphoma cell lines. Leukemia, 1998, 12, 773-773.	3.3	2
97	Recurrent integration of papillomavirus DNA within the human 12q14–15 uterine breakpoint region in genital carcinomas. , 1998, 23, 55-60.		11
98	Pattern of expression of tetraspanin antigen genes in Burkitt lymphoma cell lines. Clinical and Experimental Immunology, 1998, 113, 346-352.	1.1	16
99	Physiological activation of human neutrophils down-regulates CD53 cell surface antigen. Journal of Leukocyte Biology, 1998, 63, 699-706.	1.5	28
100	Identification of Two Isoforms of the Vesicle-Membrane Fusion Protein SNAP-23 in Human Neutrophils and HL-60 Cells. Biochemical and Biophysical Research Communications, 1997, 231, 808-812.	1.0	48
101	Papillomavirus integration: Prognostic marker in cervical cancer?. American Journal of Obstetrics and Gynecology, 1997, 176, 1121-1122.	0.7	16
102	Ligation of CD53/OX44, a Tetraspan Antigen, Induces Homotypic Adhesion Mediated by Specific Cell–Cell Interactions. Cellular Immunology, 1997, 178, 132-140.	1.4	35
103	Complex genomic rearrangement within the 12q15 multiple aberration region induced by integrated human papillomavirus 18 in a cervical carcinoma cell line., 1997, 19, 114-121.		15
104	Recurrent infectious diseases in human CD53 deficiency. Vaccine Journal, 1997, 4, 229-231.	2.6	56
105	CD53 Antigen and Epidermal Growth Factor Induce Similar Changes in the Pattern of Phorbol Ester Binding in a B Cell Lymphoma. Cellular Immunology, 1996, 169, 107-112.	1.4	10
106	Deletion in Human Chromosome Region 12q13-15 by Integration of Human Papillomavirus DNA in a Cervical Carcinoma Cell Line. Journal of Biological Chemistry, 1995, 270, 24321-24326.	1.6	69
107	HindIll RFLP in the human CD53 gene on 1p13. Human Molecular Genetics, 1994, 3, 1711-1711.	1.4	2
108	Induction of nitric oxide release by MRC OX-44 (anti-CD53) through a protein kinase C-dependent pathway in rat macrophages Journal of Experimental Medicine, 1994, 179, 1119-1126.	4.2	57

#	Article	IF	CITATIONS
109	Integration site of human papillomavirus type-18 DNA in chromosome band 8q22.1 of C4-1 cervical carcinoma: DNase I hypersensitivity and methylation of cellular flanking sequences. Genes Chromosomes and Cancer, 1994, 9, 28-32.	1.5	18
110	The human zinc-finger protein-7 gene is located 90 kb 3′ ofMYC and is not expressed in Burkitt lymphoma cell lines. International Journal of Cancer, 1994, 58, 855-859.	2.3	9
111	The human CD53 gene, coding for a four transmembrane domain protein, maps to chromosomal region 1p13. Genomics, 1993, 18, 725-728.	1.3	6
112	Genetic alterations by human papillomaviruses in oncogenesis. FEBS Letters, 1992, 300, 109-113.	1.3	27
113	Variant translocations in two Burkitt's lymphoma cell lines are located in theMLV14 locus. Genes Chromosomes and Cancer, 1992, 5, 267-269.	1.5	2
114	Long-distance activation of the Myc protooncogene by provirus insertion in Mlvi-1 or Mlvi-4 in rat T-cell lymphomas Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 170-173.	3.3	108
115	Induction of multiple independent T-cell lymphomas in rats inoculated with MOloney murine leukemia virus Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4269-4272.	3.3	6
116	Provirus insertion in Tpl-1, an Ets-1-related oncogene, is associated with tumor progression in Moloney murine leukemia virus-induced rat thymic lymphomas Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 7495-7499.	3.3	54
117	Human papillomaviruses in oncogenesis. BioEssays, 1988, 9, 158-162.	1.2	12
118	Structure, DNasel hypersensitivity and expression of integrated papilloma virus in the genome of HeLa cells. FEBS Journal, 1987, 165, 393-401.	0.2	19
119	Pathogenesis of Viral Infections. New England Journal of Medicine, 1985, 312, 1574-1574.	13.9	2
120	Shuttle vectors to study somatic mutagenesis and regulation of gene expression in the immune system. Gene, 1985, 39, 147-153.	1.0	6
121	Allosteric inhibition of brain hexokinase by glucose 6-phosphate in the reverse reaction. Archives of Biochemistry and Biophysics, 1985, 239, 315-319.	1.4	12
122	Tumour-host metabolic interaction and cachexia. FEBS Letters, 1985, 187, 189-192.	1.3	16
123	CANCER CACHEXIA AND PROTEIN METABOLISM. Lancet, The, 1984, 324, 411-412.	6.3	1
124	Mitochondrial Membrane-Bound Hexokinase of Ascites Tumor Cells. Functional Implications of Lysine Residues Studied by Modification with Imidoesters. Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1982, 363, 635-640.	1.7	4
125	Tumour induction of host leucine starvation. FEBS Letters, 1981, 135, 229-231.	1.3	15
126	Amino Acids and Glucose Utilization by Different Metabolic Pathways in Ascites‶umour Cells. FEBS Journal, 1981, 117, 19-25.	0.2	80

#	Article	IF	CITATIONS
127	Energetics of tumour cells: enzymic basis of aerobic glycolysis. Biochemical Society Transactions, 1980, 8, 579-579.	1.6	9
128	Identification of an AMP-activatable pyruvate dehydrogenase isozyme in embryos and tumors. FEBS Letters, 1980, 120, 287-288.	1.3	8
129	Specific inactivation of animal hexokinases by xylose in vitro, in situ and in vivo. FEBS Letters, 1979, 98, 88-90.	1.3	6
130	Vrk1. The AFCS-nature Molecule Pages, 0, , .	0.2	12
131	Vrk2. The AFCS-nature Molecule Pages, 0, , .	0.2	11
132	Vrk3. The AFCS-nature Molecule Pages, 0, , .	0.2	11
133	CD53. The AFCS-nature Molecule Pages, 0, , .	0.2	0