Barbara D Abbott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1914873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of Mouse and Human Peroxisome Proliferator–Activated Receptors (α, β/δ, γ) by Perfluorooctanoic Acid and Perfluorooctane Sulfonate. Toxicological Sciences, 2007, 95, 108-117.	3.1	318
2	ARNT-Deficient Mice and Placental Differentiation. Developmental Biology, 1997, 191, 297-305.	2.0	300
3	Activation of Mouse and Human Peroxisome Proliferatorâ^'Activated Receptor Alpha by Perfluoroalkyl Acids of Different Functional Groups and Chain Lengths. Toxicological Sciences, 2008, 106, 162-171.	3.1	233
4	A critical review of the developmental toxicity and teratogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin: Recent advances toward understanding the mechanism. Teratology, 1990, 42, 619-627.	1.6	232
5	Perfluorooctanoic Acid Induced Developmental Toxicity in the Mouse is Dependent on Expression of Peroxisome Proliferator Activated Receptor-alpha. Toxicological Sciences, 2007, 98, 571-581.	3.1	219
6	Adverse Reproductive Outcomes in the Transgenic Ah Receptor-Deficient Mouse. Toxicology and Applied Pharmacology, 1999, 155, 62-70.	2.8	192
7	Review of the expression of peroxisome proliferator-activated receptors alpha (PPARα), beta (PPARβ), and gamma (PPARγ) in rodent and human development. Reproductive Toxicology, 2009, 27, 246-257.	2.9	181
8	Toxicogenomic Dissection of the Perfluorooctanoic Acid Transcript Profile in Mouse Liver: Evidence for the Involvement of Nuclear Receptors PPARI \pm and CAR. Toxicological Sciences, 2008, 103, 46-56.	3.1	169
9	Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis. Toxicology, 2017, 378, 37-52.	4.2	163
10	Developmental Toxicity of Perfluorooctanoic Acid in the CD-1 Mouse after Cross-Foster and Restricted Gestational Exposures. Toxicological Sciences, 2006, 95, 462-473.	3.1	156
11	PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling. Toxicology, 2017, 387, 95-107.	4.2	139
12	Activation of mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) by perfluoroalkyl acids (PFAAs): Further investigation of C4–C12 compounds. Reproductive Toxicology, 2012, 33, 546-551.	2.9	121
13	Gene Profiling in the Livers of Wild-type and PPARα-Null Mice Exposed to Perfluorooctanoic Acid. Toxicologic Pathology, 2008, 36, 592-607.	1.8	114
14	Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPARα) in the mouse. Reproductive Toxicology, 2009, 27, 258-265.	2.9	107
15	Gene Expression Profiling in Wild-Type and PPAR-Null Mice Exposed to Perfluorooctane Sulfonate Reveals PPAR-Independent Effects. PPAR Research, 2010, 2010, 1-23.	2.4	100
16	Comparative Hepatic Effects of Perfluorooctanoic Acid and WY 14,643 in PPAR-α Knockout and Wild-type Mice. Toxicologic Pathology, 2008, 36, 632-639.	1.8	92
17	The effects of perfluorinated chemicals on adipocyte differentiation in vitro. Molecular and Cellular Endocrinology, 2015, 400, 90-101.	3.2	83
18	Effects of perfluorooctanoic acid on mouse mammary gland development and differentiation resulting from cross-foster and restricted gestational exposures. Reproductive Toxicology, 2009, 27, 289-298.	2.9	74

#	Article	IF	CITATIONS
19	Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues. Reproductive Toxicology, 2012, 33, 491-505.	2.9	74
20	Placental defects in ARNT-knockout conceptus correlate with localized decreases in VEGF-R2, Ang-1, and Tie-2. Developmental Dynamics, 2000, 219, 526-538.	1.8	62
21	Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium. PLoS ONE, 2015, 10, e0112655.	2.5	61
22	Evaluating the additivity of perfluoroalkyl acids in binary combinations on peroxisome proliferator-activated receptor-α activation. Toxicology, 2014, 316, 43-54.	4.2	54
23	Teratogenicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) in Mice Lacking the Expression of ECF and/or TGF-Â. Toxicological Sciences, 2001, 62, 103-114.	3.1	45
24	Transcriptional ontogeny of the developing liver. BMC Genomics, 2012, 13, 33.	2.8	41
25	Effects of TCDD on Ah receptor, ARNT, EGF, and TGF-α expression in embryonic mouse urinary tract. Teratology, 1997, 55, 326-337.	1.6	39
26	Developmental Effects of Perfluorononanoic Acid in the Mouse Are Dependent on Peroxisome Proliferator-Activated Receptor-Alpha. PPAR Research, 2010, 2010, 1-11.	2.4	39
27	EGF and TGF-alpha Expression Influence the Developmental Toxicity of TCDD: Dose Response and AhR Phenotype in EGF, TGF-alpha, and EGF + TGF-alpha Knockout Mice. Toxicological Sciences, 2003, 71, 84-95.	3.1	37
28	2,3,7,8-Tetrachlorodibenzo-p-dioxin in Pregnant Long Evans Rats: Disposition to Maternal and Embryo/Fetal Tissues. Toxicological Sciences, 1998, 45, 129-136.	3.1	33
29	Evaluation of perfluoroalkyl acid activity using primary mouse and human hepatocytes. Toxicology, 2013, 308, 129-137.	4.2	33
30	A systematic evaluation of the potential effects of trichloroethylene exposure on cardiac development. Reproductive Toxicology, 2016, 65, 321-358.	2.9	31
31	Glucocorticoid Receptor Regulation in the Rat Embryo: A Potential Site for Developmental Toxicity?. Toxicology and Applied Pharmacology, 2000, 164, 221-229.	2.8	30
32	Testing for departures from additivity in mixtures of perfluoroalkyl acids (PFAAs). Toxicology, 2013, 306, 169-175.	4.2	29
33	Lack of Expression of EGF and TGF-Â in the Fetal Mouse Alters Formation of Prostatic Epithelial Buds and Influences the Response to TCDD. Toxicological Sciences, 2003, 76, 427-436.	3.1	26
34	The etiology of cleft palate: a 50â€year search for mechanistic and molecular understanding. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2010, 89, 266-274.	1.4	26
35	Characterizing cleft palate toxicants using ToxCast data, chemical structure, and the biomedical literature. Birth Defects Research, 2020, 112, 19-39.	1.5	26
36	Effects of epidermal growth factor (EGF), transforming growth factor-α (TGFα), and 2,3,7,8-tetrachlorodibenzo-p-dioxin on fusion of embryonic palates in serum-free organ culture using wild-type, EGF knockout, and TGFα knockout mouse strains. Birth Defects Research Part A: Clinical and Molecular Teratology, 2005, 73, 447-454.	1.6	22

BARBARA D ABBOTT

#	Article	IF	CITATIONS
37	Peroxisome Proliferator-Activated Receptors Alpha, Beta, and Gamma mRNA and Protein Expression in Human Fetal Tissues. PPAR Research, 2010, 2010, 1-19.	2.4	21
38	Teratogenic effects of retinoic acid are modulated in mice lacking expression of epidermal growth factor and transforming growth factor-?. Birth Defects Research Part A: Clinical and Molecular Teratology, 2005, 73, 204-217.	1.6	20
39	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Early Morphogenetic Events That Form the Lower Reproductive Tract in Female Rat Fetuses. Toxicological Sciences, 2002, 65, 87-98.	3.1	18
40	A Three-Dimensional Organoid Culture Model to Assess the Influence of Chemicals on Morphogenetic Fusion. Toxicological Sciences, 2018, 166, 394-408.	3.1	18
41	Engineering human cell spheroids to model embryonic tissue fusion in vitro. PLoS ONE, 2017, 12, e0184155.	2.5	17
42	Adrenocorticotropin (ACTH) and corticosterone secretion by perifused pituitary and adrenal glands from rodents exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicology, 2000, 151, 25-35.	4.2	15
43	PPARs and Xenobiotic-Induced Adverse Effects: Relevance to Human Health. PPAR Research, 2010, 2010, 1-4.	2.4	15
44	Methoxychlor-Induced Alterations in the Histological Expression of Angiogenic Factors in Pituitary and Uterus. Journal of Molecular Histology, 2003, 35, 363-375.	2.2	9
45	Screening for Developmental Toxicity of Tobacco Smoke Constituents. Toxicological Sciences, 2003, 75, 227-228.	3.1	9
46	Development of an organotypic stem cell model for the study of human embryonic palatal fusion. Birth Defects Research, 2018, 110, 1322-1334.	1.5	9
47	Erratum to "Peroxisome Proliferator-Activated Receptors Alpha, Beta, and Gamma mRNA and Protein Expression in Human Fetal Tissues― PPAR Research, 2010, 2010, 1-2.	2.4	7
48	Engineering epithelial-stromal interactions in vitro for toxicology assessment. Toxicology, 2017, 382, 93-107.	4.2	7
49	Embryonic Midfacial Palatal Organ Culture Methods in Developmental Toxicology. Methods in Molecular Biology, 2019, 1965, 93-105.	0.9	5
50	Palatal Dysmorphogenesis: Palate Organ Culture. , 2000, 136, 195-201.		4
51	Teratogenicity of benzoic acid derivatives of retinoic acid in cultured mouse embryos. Reproductive Toxicology, 1988, 2, 91-98.	2.9	3
52	Developmental Anomalies in Habrobracon hebetor Exposed to Volatilized Agents. Annals of the Entomological Society of America, 1984, 77, 597-603.	2.5	2
53	Disruption of antennal morphogenesis inBracon hebetor by exposure to triethylamine. Archives of Insect Biochemistry and Physiology, 1987, 4, 129-138.	1.5	2
54	Palatal Dysmorphogenesis Quantitative RT-PCR. , 2000, 136, 203-217.		2

#	Article	IF	CITATIONS
55	Developmental Toxicity. Molecular and Integrative Toxicology, 2015, , 203-218.	0.5	2
56	Approaches for evaluation of mode of action. , 2011, , 429-444.		1
57	Developmental Toxicology. , 0, , .		0
58	Cellular, Biochemical, and Molecular Techniques in Developmental Toxicology. , 2005, , 589-620.		0