
Iain B H Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1914649/publications.pdf Version: 2024-02-01

IAIN R H WUSON

#	Article	IF	CITATIONS
1	Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconjugate Journal, 1999, 16, 109-123.	2.7	300
2	Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nature Communications, 2015, 6, 6158.	12.8	231
3	Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. Journal of the American Society for Mass Spectrometry, 2000, 11, 564-571.	2.8	213
4	Core Â1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology, 1998, 8, 651-661.	2.5	205
5	Fucose in N-glycans: from plant to man. Biochimica Et Biophysica Acta - General Subjects, 1999, 1473, 216-236.	2.4	197
6	Glycosylation of proteins in plants and invertebrates. Current Opinion in Structural Biology, 2002, 12, 569-577.	5.7	153
7	Antibody binding to venom carbohydrates is a frequent cause for double positivity to honeybee and yellow jacket venom in patients with stinging-insect allergy. Journal of Allergy and Clinical Immunology, 2001, 108, 1045-1052.	2.9	152
8	Identification of Core α1,3-Fucosylated Glycans and Cloning of the Requisite Fucosyltransferase cDNA from Drosophila melanogaster. Journal of Biological Chemistry, 2001, 276, 28058-28067.	3.4	147
9	The Drosophila fused lobes Gene Encodes an N-Acetylglucosaminidase Involved in N-Glycan Processing. Journal of Biological Chemistry, 2006, 281, 4867-4875.	3.4	142
10	Nitroimidazole Action in Entamoeba histolytica: A Central Role for Thioredoxin Reductase. PLoS Biology, 2007, 5, e211.	5.6	135
11	Specificity analysis of lectins and antibodies using remodeled glycoproteins. Analytical Biochemistry, 2009, 386, 133-146.	2.4	124
12	Schistosome Nâ€glycans containing core α3â€fucose and core β2â€xylose epitopes are strong inducers of Th2 responses in mice. European Journal of Immunology, 2003, 33, 1271-1281.	2.9	110
13	Specificity of IgG and IgE antibodies against plant and insect glycoprotein glycans determined with artificial glycoforms of human transferrin. Glycobiology, 2004, 14, 457-466.	2.5	109
14	Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates. Glycobiology, 2005, 15, 463-474.	2.5	109
15	Crossâ€reactive Nâ€glycans of Api g 5, a high molecular weight glycoprotein allergen from celery, are required for immunoglobulin E binding and activation of effector cells from allergic patients. FASEB Journal, 2003, 17, 1697-1699.	0.5	106
16	Molecular cloning and functional expression of \hat{I}^2 1,2-xylosyltransferase cDNA from Arabidopsis thaliana 1. FEBS Letters, 2000, 472, 105-108.	2.8	104
17	Genetic model organisms in the study of N-glycans. Biochimie, 2001, 83, 703-712.	2.6	100
18	Caenorhabditis elegans N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2. PLoS Pathogens, 2010, 6, e1000717.	4.7	95

#	Article	IF	CITATIONS
19	Structural analysis of N-glycans from allergenic grass, ragweed and tree pollens: core alpha1,3-linked fucose and xylose present in all pollens examined. Glycoconjugate Journal, 1998, 15, 1055-1070.	2.7	86
20	Biosynthesis of Truncated N-Linked Oligosaccharides Results from Non-orthologous Hexosaminidase-mediated Mechanisms in Nematodes, Plants, and Insects. Journal of Biological Chemistry, 2007, 282, 27825-27840.	3.4	84
21	The N-glycosylation pattern of Caenorhabditis elegans. Carbohydrate Research, 2008, 343, 2041-2049.	2.3	78
22	Cloning and expression of cDNAs encoding α1,3-fucosyltransferase homologues from Arabidopsis thaliana1The cDNA sequences referred to in this publication have been deposited with the EMBL database under the numbers AJ404860 (FucTA), AJ404861 (FucTB) and AJ404862 (FucTC).1. Biochimica Et Biophysica Acta - General Subjects, 2001, 1527, 88-96.	2.4	77
23	Molecular Basis of Anti-horseradish Peroxidase Staining in Caenorhabditis elegans. Journal of Biological Chemistry, 2004, 279, 49588-49598.	3.4	74
24	SweetBac: A New Approach for the Production of Mammalianised Glycoproteins in Insect Cells. PLoS ONE, 2012, 7, e34226.	2.5	73
25	Complicated N-linked glycans in simple organisms. Biological Chemistry, 2012, 393, 661-673.	2.5	69
26	Revealing the anti-HRP epitope in Drosophila and Caenorhabditis. Glycoconjugate Journal, 2009, 26, 385-395.	2.7	65
27	Plasticity of the β-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System. PLoS Pathogens, 2012, 8, e1002706.	4.7	65
28	The Galectin CvGal1 from the Eastern Oyster (Crassostrea virginica) Binds to Blood Group A Oligosaccharides on the Hemocyte Surface*. Journal of Biological Chemistry, 2013, 288, 24394-24409.	3.4	61
29	The N-glycans of Trichomonas vaginalis contain variable core and antennal modifications. Glycobiology, 2012, 22, 300-313.	2.5	60
30	Targeted release and fractionation reveal glucuronylated and sulphated N- and O-glycans in larvae of dipteran insects. Journal of Proteomics, 2015, 126, 172-188.	2.4	59
31	The never-ending story of peptide O -xylosyltransferase. Cellular and Molecular Life Sciences, 2004, 61, 794-809.	5.4	56
32	Fucosyltransferases as Synthetic Tools: Glycan Array Based Substrate Selection and Core Fucosylation of SyntheticN-Glycans. Journal of the American Chemical Society, 2011, 133, 16495-16502.	13.7	56
33	N-Glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues. FEBS Journal, 2007, 274, 714-726.	4.7	51
34	Hemocytes and Plasma of the Eastern Oyster (Crassostrea virginica) Display a Diverse Repertoire of Sulfated and Blood Group A-modified N-Glycans*. Journal of Biological Chemistry, 2013, 288, 24410-24428.	3.4	49
35	Molecular Basis for Galactosylation of Core Fucose Residues in Invertebrates. Journal of Biological Chemistry, 2009, 284, 36223-36233.	3.4	48
36	The underestimated N-glycomes of lepidopteran species. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 699-714.	2.4	47

#	Article	IF	CITATIONS
37	A genetic and structural analysis of the -glycosylation capabilities. Plant Molecular Biology, 2004, 55, 631-644.	3.9	44
38	A Deletion in the Golgi α-Mannosidase II Gene of Caenorhabditis elegans Results in Unexpected Non-wild-type N-Glycan Structures. Journal of Biological Chemistry, 2006, 281, 28265-28277.	3.4	44
39	Modulation of Neural Carbohydrate Epitope Expression in Drosophila melanogaster Cells. Journal of Biological Chemistry, 2006, 281, 3343-3353.	3.4	44
40	Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum. Cellular Microbiology, 2010, 12, 1222-1234.	2.1	44
41	Galactosylated Fucose Epitopes in Nematodes. Journal of Biological Chemistry, 2012, 287, 28276-28290.	3.4	43
42	Functional Characterization of Drosophila melanogaster Peptide O-Xylosyltransferase, the Key Enzyme for Proteoglycan Chain Initiation and Member of the Core 2/I N-Acetylglucosaminyltransferase Family. Journal of Biological Chemistry, 2002, 277, 21207-21212.	3.4	42
43	Expression of eukaryotic glycosyltransferases in the yeast Pichia pastoris. Biochimie, 2003, 85, 413-422.	2.6	42
44	Efficient Enzymatic Synthesis of the Core Trisaccharide ofN-Glycans with a Recombinant1²-Mannosyltransferase. Angewandte Chemie International Edition in English, 1997, 36, 2354-2356.	4.4	41
45	Recombinant Aspergillus β-galactosidases as a robust glycomic and biotechnological tool. Applied Microbiology and Biotechnology, 2014, 98, 3553-3567.	3.6	40
46	Parasite Glycobiology: A Bittersweet Symphony. PLoS Pathogens, 2015, 11, e1005169.	4.7	40
47	The chemoenzymatic synthesis of the core trisaccharide of N-linked oligosaccharides using a recombinant β-mannosyltransferase. Carbohydrate Research, 1997, 305, 533-541.	2.3	39
48	Mass spectrometric analysis of the immunodominant glycan epitope of Echinococcus granulosus antigen Ag5. International Journal for Parasitology, 2012, 42, 279-285.	3.1	39
49	Analysis of Microarrays by MALDIâ€₹OF MS. Angewandte Chemie - International Edition, 2013, 52, 7477-7481.	13.8	39
50	Comparison of RPâ€HPLC modes to analyse the Nâ€glycome of the freeâ€living nematode <i>Pristionchus pacificus</i> . Electrophoresis, 2015, 36, 1314-1329.	2.4	37
51	Mass Spectrometric Analysis of Neutral and Anionic N-Glycans from a <i>Dictyostelium discoideum</i> Model for Human Congenital Disorder of Glycosylation CDG IL. Journal of Proteome Research, 2013, 12, 1173-1187.	3.7	36
52	Highly modified and immunoactive N-glycans of the canine heartworm. Nature Communications, 2019, 10, 75.	12.8	36
53	A role for heparan sulfate proteoglycans in <i>Plasmodium falciparum</i> sporozoite invasion of anopheline mosquito salivary glands. Biochemical Journal, 2011, 438, 475-483.	3.7	35
54	Two types of galactosylated fucose motifs are present on N-glycans of Haemonchus contortus. Glycobiology, 2015, 25, 585-590.	2.5	35

#	Article	IF	CITATIONS
55	Characterization of an α- <scp>l</scp> -fucosidase from the periodontal pathogen <i>Tannerella forsythia</i> . Virulence, 2015, 6, 282-292.	4.4	35
56	Core Richness of N-Glycans of <i>Caenorhabditis elegans</i> : A Case Study on Chemical and Enzymatic Release. Analytical Chemistry, 2018, 90, 928-935.	6.5	35
57	Characterisation of class I and II α-mannosidases from Drosophila melanogaster. Glycoconjugate Journal, 2013, 30, 899-909.	2.7	34
58	Identification of a cDNA encoding a plant Lewis-type alpha1,4-fucosyltransferase. Glycoconjugate Journal, 2001, 18, 439-447.	2.7	33
59	Array-assisted Characterization of a Fucosyltransferase Required for the Biosynthesis of Complex Core Modifications of Nematode N-Glycans. Journal of Biological Chemistry, 2013, 288, 21015-21028.	3.4	33
60	Bisecting Galactose as a Feature of N-Glycans of Wild-type and Mutant Caenorhabditis elegans. Molecular and Cellular Proteomics, 2015, 14, 2111-2125.	3.8	32
61	Insect cells for antibody production: Evaluation of an efficient alternative. Journal of Biotechnology, 2011, 153, 160-166.	3.8	31
62	More Than Just Oligomannose: An N-glycomic Comparison of Penicillium Species. Molecular and Cellular Proteomics, 2016, 15, 73-92.	3.8	30
63	Repression of N-glycosylation triggers the unfolded protein response (UPR) and overexpression of cell wall protein and chitin in Aspergillus fumigatus. Microbiology (United Kingdom), 2011, 157, 1968-1979.	1.8	29
64	Comparisons of <i>Caenorhabditis</i> Fucosyltransferase Mutants Reveal a Multiplicity of Isomeric N-Glycan Structures. Journal of Proteome Research, 2015, 14, 5291-5305.	3.7	29
65	Adaptation of the "inâ€gel release method―to <i>N</i> â€glycome analysis of lowâ€milligram amounts of material. Electrophoresis, 2007, 28, 4484-4492.	2.4	28
66	Presence of galactosylated core fucose on Nâ€glycans in the planaria <i>Dugesia japonica</i> . Journal of Mass Spectrometry, 2011, 46, 561-567.	1.6	28
67	Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris. Microbial Cell Factories, 2017, 16, 49.	4.0	28
68	Towards abolition of immunogenic structures in insect cells: characterization of a honey-bee (Apis) Tj ETQq0 0 C insect Lewis-histo-blood-group-related antigen-synthesizing enzyme. Biochemical Journal, 2007, 402, 105-115.) rgBT /Ove 3.7	erlock 10 Tf 5 27
69	Enzymatic properties and subtle differences in the substrate specificity of phylogenetically distinct invertebrate N-glycan processing hexosaminidases. Glycobiology, 2015, 25, 448-464.	2.5	27
70	Sweet secrets of a therapeutic worm: mass-spectrometric N-glycomic analysis of Trichuris suis. Analytical and Bioanalytical Chemistry, 2016, 408, 461-471.	3.7	27
71	Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective. Molecular and Cellular Proteomics, 2021, 20, 100024.	3.8	27
72	Isomeric Separation and Recognition of Anionic and Zwitterionic N-glycans from Royal Jelly Glycoproteins. Molecular and Cellular Proteomics, 2018, 17, 2177-2196.	3.8	26

#	Article	IF	CITATIONS
73	Comparisons of N-glycans across invertebrate phyla. Parasitology, 2019, 146, 1733-1742.	1.5	26
74	XT-II, the Second Isoform of Human Peptide-O-xylosyltransferase, Displays Enzymatic Activity. Journal of Biological Chemistry, 2007, 282, 5984-5990.	3.4	25
75	Mammalian cells contain a second nucleocytoplasmic hexosaminidase. Biochemical Journal, 2009, 419, 83-90.	3.7	25
76	Entamoeba histolytica: Analysis of the trophozoite proteome by two-dimensional polyacrylamide gel electrophoresis. Experimental Parasitology, 2005, 110, 191-195.	1.2	24
77	Definition of immunogenic carbohydrate epitopes Acta Biochimica Polonica, 2019, 52, 629-632.	0.5	24
78	Molecular and immunological characterization of the glycosylated orange allergen Cit s 1. Glycobiology, 2007, 17, 220-230.	2.5	23
79	Analysis of zwitterionic and anionic N-linked glycans from invertebrates and protists by mass spectrometry. Glycoconjugate Journal, 2016, 33, 273-283.	2.7	23
80	Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster. FEBS Journal, 2006, 273, 2244-2256.	4.7	22
81	Anionic and zwitterionic moieties as widespread glycan modifications in non-vertebrates. Glycoconjugate Journal, 2020, 37, 27-40.	2.7	22
82	The Drosophila melanogaster homologue of the human histo-blood group Pk gene encodes a glycolipid-modifying α1,4-N-acetylgalactosaminyltransferase. Biochemical Journal, 2004, 382, 67-74.	3.7	21
83	Distantly related plant and nematode core α1,3-fucosyltransferases display similar trends in structure–function relationships. Glycobiology, 2011, 21, 1401-1415.	2.5	21
84	Kexin-like endoprotease KexB is required for N-glycan processing, morphogenesis and virulence in Aspergillus fumigatus. Fungal Genetics and Biology, 2015, 76, 57-69.	2.1	21
85	Comparative characterisation of recombinant invertebrate and vertebrate peptide O-Xylosyltransferases. Glycoconjugate Journal, 2006, 23, 543-554.	2.7	20
86	Development of <i>Dictyostelium discoideum</i> is associated with alteration of fucosylated N-glycan structures. Biochemical Journal, 2009, 423, 41-52.	3.7	20
87	Neural-specific α3-fucosylation of N-linked glycans in the Drosophila embryo requires Fucosyltransferase A and influences developmental signaling associated with O-glycosylation. Glycobiology, 2010, 20, 1353-1365.	2.5	20
88	Exploring the Unique N-Glycome of the Opportunistic Human Pathogen Acanthamoeba. Journal of Biological Chemistry, 2012, 287, 43191-43204.	3.4	20
89	â€~Click chemistry' synthesis of 1-(α-d-mannopyranosyl)-1,2,3-triazoles for inhibition of α-mannosidases. Carbohydrate Research, 2015, 406, 34-40.	2.3	20
90	Analysis of Invertebrate and Protist N-Glycans. Methods in Molecular Biology, 2017, 1503, 167-184.	0.9	20

#	Article	IF	CITATIONS
91	N-glycomic Complexity in Anatomical Simplicity: Caenorhabditis elegans as a Non-model Nematode?. Frontiers in Molecular Biosciences, 2019, 6, 9.	3.5	20
92	The chemoenzymatic synthesis of neoglycolipids and lipid-linked oligosaccharides using glycosyltransferases. Bioorganic and Medicinal Chemistry, 1994, 2, 1243-1250.	3.0	18
93	Development of recombinant, immobilised β-1,4-mannosyltransferase for use as an efficient tool in the chemoenzymatic synthesis of N-linked oligosaccharides. Biochimica Et Biophysica Acta - General Subjects, 1999, 1428, 88-98.	2.4	18
94	Biochemical correlation of activity of the α-dystroglycan-modifying glycosyltransferase POMGnT1 with mutations in muscle-eye-brain disease. Biochemical Journal, 2011, 436, 447-455.	3.7	18
95	One Single Basic Amino Acid at the ï‰-1 or ï‰-2 Site Is a Signal That Retains Glycosylphosphatidylinositol-Anchored Protein in the Plasma Membrane of Aspergillus fumigatus. Eukaryotic Cell, 2013, 12, 889-899.	3.4	18
96	The fucomic potential of mosquitoes: Fucosylated N-glycan epitopes and their cognate fucosyltransferases. Insect Biochemistry and Molecular Biology, 2016, 68, 52-63.	2.7	17
97	Protein Clycosylation. , 1998, , .		17
98	Concanavalin A binding and endoglycosidase D resistance of beta1,2-xylosylated and alpha1,3-fucosylated plant and insect oligosaccharides. , 1998, 15, 203-206.		16
99	<i>N</i> â€Benzyl Substitution of Polyhydroxypyrrolidines: The Way to Selective Inhibitors of Golgi αâ€Mannosidaseâ€II. ChemMedChem, 2018, 13, 373-383.	3.2	16
100	Synthesis of cross-reactive carbohydrate determinants fragments as tools for in vitro allergy diagnosis. Bioorganic and Medicinal Chemistry, 2011, 19, 1306-1320.	3.0	15
101	<i>N</i> â€glycomic profiling of a glucosidase II mutant of <i>Dictyostelium discoideum</i> by â€~â€~offâ€line liquid chromatography and mass spectrometry. Electrophoresis, 2014, 35, 2116-2129.	^м ậ€™ 2.4	15
102	Mechanism of Human Nucleocytoplasmic Hexosaminidase D. Biochemistry, 2016, 55, 2735-2747.	2.5	15
103	The parasitic nematode Oesophagostomum dentatum synthesizes unusual glycosaminoglycan-like O-glycans. Glycobiology, 2018, 28, 474-481.	2.5	15
104	A consensus-based and readable extension of <i>Li</i> near <i>Co</i> de for <i>R</i> eaction <i>R</i> ules (LiCoRR). Beilstein Journal of Organic Chemistry, 2020, 16, 2645-2662.	2.2	14
105	Definition of immunogenic carbohydrate epitopes. Acta Biochimica Polonica, 2005, 52, 629-32.	0.5	13
106	Typing of Leishmania lipophosphoglycans by electrospray mass spectrometry. Molecular and Biochemical Parasitology, 1999, 100, 207-215.	1.1	12
107	The Drosophila Neurally Altered Carbohydrate Mutant Has a Defective Golgi GDP-fucose Transporter. Journal of Biological Chemistry, 2012, 287, 29599-29609.	3.4	12
108	The class I α1,2-mannosidases of Caenorhabditis elegans. Glycoconjugate Journal, 2012, 29, 173-179.	2.7	12

#	Article	IF	CITATIONS
109	UDP-xylose and UDP-galactose synthesis in Trichomonas vaginalis. Molecular and Biochemical Parasitology, 2012, 181, 53-56.	1.1	12
110	Development of a multifunctional aminoxy-based fluorescent linker for glycan immobilization and analysis. Glycobiology, 2016, 26, 1297-1307.	2.5	12
111	Ablation of N-acetylglucosaminyltransferases in Caenorhabditis induces expression of unusual intersected and bisected N-glycans. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2191-2203.	2.4	12
112	Glycosylation at an evolutionary nexus: the brittle star Ophiactis savignyi expresses both vertebrate and invertebrate N-glycomic features. Journal of Biological Chemistry, 2020, 295, 3173-3188.	3.4	12
113	N-Glycomic and N-Glycoproteomic Studies in the Social Amoebae. Methods in Molecular Biology, 2013, 983, 205-229.	0.9	11
114	Hydrophilic interaction anion exchange for separation of multiply modified neutral and anionic <i>Dictyostelium</i> Nâ€glycans. Electrophoresis, 2017, 38, 2175-2183.	2.4	11
115	Biochemical Characterization of Oyster and Clam Galectins: Selective Recognition of Carbohydrate Ligands on Host Hemocytes and Perkinsus Parasites. Frontiers in Chemistry, 2020, 8, 98.	3.6	11
116	The adaptive landscape of wildtype and glycosylation-deficient populations of the industrial yeast Pichia pastoris. BMC Genomics, 2017, 18, 597.	2.8	10
117	Eine effiziente enzymatische Synthese des Coreâ€Trisaccharids von Nâ€Glycanen mit einer rekombinanten βâ€Mannosyltransferase. Angewandte Chemie, 1997, 109, 2445-2447.	2.0	9
118	Comparison of the proteome profiles of Entamoeba histolytica and its close but non-pathogenic relative Entamoeba dispar. Wiener Klinische Wochenschrift, 2006, 118, 37-41.	1.9	9
119	Glycomarkers in parasitic infections and allergy. Biochemical Society Transactions, 2011, 39, 360-364.	3.4	9
120	Aspergillus fumigatus Mnn9 is responsible for mannan synthesis and required for covalent linkage of mannoprotein to the cell wall. Fungal Genetics and Biology, 2019, 128, 20-28.	2.1	9
121	Sulfated and sialylated N-glycans in the echinoderm Holothuria atra reflect its marine habitat and phylogeny. Journal of Biological Chemistry, 2020, 295, 3159-3172.	3.4	9
122	Biological and biochemical properties of two Xenopus laevis N-acetylgalactosaminyltransferases with contrasting roles in embryogenesis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2015, 180, 40-47.	1.6	8
123	Aspergillus fumigatus phosphoethanolamine transferase gene gpi7 is required for proper transportation of the cell wall GPI-anchored proteins and polarized growth. Scientific Reports, 2019, 9, 5857.	3.3	6
124	Zwitterionic Phosphodiester-Substituted Neoglycoconjugates as Ligands for Antibodies and Acute Phase Proteins. ACS Chemical Biology, 2020, 15, 369-377.	3.4	6
125	Insights into the salivary N-glycome of Lutzomyia longipalpis, vector of visceral leishmaniasis. Scientific Reports, 2020, 10, 12903.	3.3	5
126	Negativeâ€mode mass spectrometry in the analysis of invertebrate, fungal, and protist Nâ€glycans. Mass Spectrometry Reviews, 2021, , .	5.4	5

#	Article	IF	CITATIONS
127	Comparative ESI FT-MS and MALDI-TOF structural analyses of representative human N-linked glycans. Chemical Papers, 2015, 69, .	2.2	4
128	Insect cells as hosts for the expression of recombinant glycoproteins. , 1999, , 29-43.		3
129	Expression, purification and preliminary crystallographic analysis ofDrosophila melanogasterlysosomal α-mannosidase. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 965-970.	0.7	3
130	Protein-Specific Analysis of Invertebrate Glycoproteins. Methods in Molecular Biology, 2019, 1871, 421-435.	0.9	3
131	Glycoscience and the Internet Trends in Glycoscience and Glycotechnology, 1996, 8, 301-310.	0.1	3
132	Comparative Glycobiology. , 2015, , 795-805.		3
133	Virtual resource development in the glycosciences. Clycoconjugate Journal, 1996, 13, 865-872.	2.7	2
134	Molecular Basis for the Biosynthesis of Oligo- and Polysaccharides. , 2008, , 2265-2323.		2
135	Glycomics. , 2016, , 75-89.		2
136	Biosynthesis and Degradation of Mono-, Oligo-, and Polysaccharides: Introduction. , 2008, , 2243-2264.		1
137	Sweet and CRISP(R)y parasite engineering. Journal of Biological Chemistry, 2019, 294, 1126-1127.	3.4	1
138	Complementing The Cell: Glycoform Synthesis In Vitro. , 1998, , 457-491.		1
139	Comparative Glycobiology. , 2014, , 1-10.		1
140	Re: Conservation and evolution of glycosylation sites on immunoglobulin-type domains. Glycobiology, 1993, 3, 418-419.	2.5	0
141	Letters to the Glyco-Forum. Glycobiology, 1995, 5, 156-156.	2.5	Ο
142	Differential recognition of natural and remodeled glycotopes by three Diocleae lectins. Glycoconjugate Journal, 2018, 35, 205-216.	2.7	0
143	Glycobiology of Caenorhabditis elegans. , 2021, , 36-54.		0
144	Core Issues: Building The Groundwork for N-Linked Sugars. , 1998, , 147-212.		0

9

#	Article	IF	CITATIONS
145	Glycomics Studies on Nematodes Elucidate Conserved Functional Epitopes and Biosynthetic Pathways. FASEB Journal, 2018, 32, 673.17.	0.5	ο
146	Natural and synthetic glycan arrays for probing interactions of the innate and adaptive immune system with zwitterionic oligosaccharides. FASEB Journal, 2020, 34, 1-1.	0.5	0