List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1914628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An efficient nonparametric double progressive mean chart for monitoring of the process location. Communications in Statistics Part B: Simulation and Computation, 2023, 52, 2578-2591.	1.2	9
2	On designing a new control chart for Rayleigh distributed processes with an application to monitor glass fiber strength. Communications in Statistics Part B: Simulation and Computation, 2022, 51, 3168-3184.	1.2	11
3	Adaptive CUSUM Location Control Charts Based on Score Functions: An Application in Semiconductor Wafer Field. Arabian Journal for Science and Engineering, 2022, 47, 3725-3749.	3.0	5
4	An enhanced double homogeneously weighted moving average control chart to monitor process location with application in automobile field. Quality and Reliability Engineering International, 2022, 38, 174-194.	2.3	17
5	A New Distribution-Free Control Chart for Monitoring Process Median Based on the Statistic of the Sign Test. Journal of Testing and Evaluation, 2022, 50, 20210135.	0.7	4
6	A new approach to design median control charts for location monitoring. Communications in Statistics Part B: Simulation and Computation, 2022, 51, 3553-3577.	1.2	8
7	On designing efficient sequential schemes to monitor nonâ€normal processes. Quality and Reliability Engineering International, 2022, 38, 615-634.	2.3	5
8	Exact computational methods for univariate and multivariate control charts under runs rules. Computers and Industrial Engineering, 2022, 163, 107821.	6.3	5
9	On Enhanced GLM-Based Monitoring: An Application to Additive Manufacturing Process. Symmetry, 2022, 14, 122.	2.2	15
10	Non-parametric progressive signed-rank control chart for monitoring the process location. Journal of Statistical Computation and Simulation, 2022, 92, 2596-2622.	1.2	6
11	On enhanced exponentialâ€cumâ€ratio estimators using robust measures of location. Concurrency Computation Practice and Experience, 2022, 34, .	2.2	1
12	Adaptive Memory Control Charts Constructed on Generalized Likelihood Ratio Test to Monitor Process Location. Arabian Journal for Science and Engineering, 2022, 47, 15049-15081.	3.0	1
13	On Reassessment of the HWMA Chart for Process Monitoring. Processes, 2022, 10, 1129.	2.8	10
14	An enhanced approach for the progressive mean control charts: A discussion and comparative analysis. Quality and Reliability Engineering International, 2021, 37, 1-9.	2.3	6
15	On Designing a Progressive EWMA Structure for an Efficient Monitoring of Silicate Enactment in Hard Bake Processes. Arabian Journal for Science and Engineering, 2021, 46, 1743-1760.	3.0	11
16	Efficacy of chloroquine or hydroxychloroquine in COVID-19 patients: a systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 2021, 76, 30-42.	3.0	109
17	Nonparametric progressive sign chart for monitoring process location based on individual data. Quality Technology and Quantitative Management, 2021, 18, 225-247.	1.9	16
18	A nonâ€parametric double homogeneously weighted moving average control chart under sign statistic. Ouality and Reliability Engineering International, 2021, 37, 1544-1560.	2.3	19

#	Article	IF	CITATIONS
19	A mixed cumulative sum homogeneously weighted moving average control chart for monitoring process mean. Quality and Reliability Engineering International, 2021, 37, 1758-1771.	2.3	11
20	On increasing the sensitivity of moving average control chart using auxiliary variable. Quality and Reliability Engineering International, 2021, 37, 1198-1209.	2.3	6
21	A mixed HWMA USUM mean chart with an application to manufacturing process. Quality and Reliability Engineering International, 2021, 37, 618-631.	2.3	30
22	Inverse Maxwell Distribution and Statistical Process Control: An Efficient Approach for Monitoring Positively Skewed Process. Symmetry, 2021, 13, 189.	2.2	11
23	On the Development of Triple Homogeneously Weighted Moving Average Control Chart. Symmetry, 2021, 13, 360.	2.2	16
24	IQR CUSUM charts: An efficient approach for monitoring variations in aquatic toxicity. Journal of Chemometrics, 2021, 35, e3336.	1.3	7
25	On correct expression of variance of double progressive mean statistic for monitoring Poisson observations. Quality and Reliability Engineering International, 2021, 37, 2325-2328.	2.3	3
26	A robust multivariate Shewhart chart for contaminated normal environments. Quality and Reliability Engineering International, 2021, 37, 2665-2684.	2.3	1
27	Advanced multivariate cumulative sum control charts based on principal component method with application. Quality and Reliability Engineering International, 2021, 37, 2760-2789.	2.3	5
28	On developing sensitive nonparametric mixed control charts with application to manufacturing industry. Quality and Reliability Engineering International, 2021, 37, 2699-2723.	2.3	13
29	Corrigendum to "Shewhart-Type Charts for Masked Data: A Strategy for Handling the Privacy Issue― Mathematical Problems in Engineering, 2021, 2021, 1-1.	1.1	0
30	On the multivariate progressive control chart for effective monitoring of covariance matrix. Quality and Reliability Engineering International, 2021, 37, 2724-2737.	2.3	7
31	Mixed memory control chart based on auxiliary information for simultaneously monitoring of process parameters: An application in glass field. Computers and Industrial Engineering, 2021, 156, 107284.	6.3	29
32	Increasing the efficiency of double moving average chart using auxiliary variable. Journal of Statistical Computation and Simulation, 2021, 91, 2880-2898.	1.2	5
33	On Designing Mixed Nonparametric Control Chart for Monitoring the Manufacturing Processes. Arabian Journal for Science and Engineering, 2021, 46, 12117-12136.	3.0	8
34	On Estimation of Three-Component Mixture of Distributions via Bayesian and Classical Approaches. Mathematical Problems in Engineering, 2021, 2021, 1-19.	1.1	2
35	Evaluation of Compost and Biochar to Mitigate Chlorpyrifos Pollution in Soil and Their Effect on Soil Enzyme Dynamics. Sustainability, 2021, 13, 9695.	3.2	11
36	An Efficient Robust Nonparametric Triple EWMA Wilcoxon Signed-Rank Control Chart for Process Location. Mathematical Problems in Engineering, 2021, 2021, 1-28.	1.1	10

#	Article	IF	CITATIONS
37	Robust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection. Mathematics, 2021, 9, 2772.	2.2	1
38	An effective approach to linear calibration estimation with its applications. Communications in Statistics - Theory and Methods, 2020, 49, 5154-5174.	1.0	2
39	On Designing a New Bayesian Dispersion Chart for Process Monitoring. Arabian Journal for Science and Engineering, 2020, 45, 2093-2111.	3.0	10
40	On designing an assorted control charting approach to monitor process dispersion: an application to hard-bake process. Journal of Taibah University for Science, 2020, 14, 65-76.	2.5	2
41	On designing an efficient control chart to monitor fraction nonconforming. Quality and Reliability Engineering International, 2020, 36, 547-564.	2.3	23
42	A modified-mxEWMA location chart for the improved process monitoring using auxiliary information and its application in wood industry. Quality Technology and Quantitative Management, 2020, 17, 561-579.	1.9	21
43	Improved linear profiling methods under classical and Bayesian setups: An application to chemical gas sensors. Chemometrics and Intelligent Laboratory Systems, 2020, 196, 103908.	3.5	24
44	On Designing Non-Parametric EWMA Sign Chart under Ranked Set Sampling Scheme with Application to Industrial Process. Mathematics, 2020, 8, 1497.	2.2	18
45	Shewhart-Type Charts for Masked Data: A Strategy for Handling the Privacy Issue. Mathematical Problems in Engineering, 2020, 2020, 1-11.	1.1	4
46	On developing an exponentially weighted moving average chart under progressive setup: An efficient approach to manufacturing processes. Quality and Reliability Engineering International, 2020, 36, 2569-2591.	2.3	22
47	On the Efficient Monitoring of Multivariate Processes with Unknown Parameters. Mathematics, 2020, 8, 823.	2.2	13
48	A New HWMA Dispersion Control Chart with an Application to Wind Farm Data. Mathematics, 2020, 8, 2136.	2.2	18
49	On best linear and Bayesian linear predictor in calibration. Communications in Statistics - Theory and Methods, 2020, , 1-25.	1.0	1
50	Statistical analysis of forecasting COVID-19 for upcoming month in Pakistan. Chaos, Solitons and Fractals, 2020, 138, 109926.	5.1	130
51	On mixed memory control charts based on auxiliary information for efficient process monitoring. Quality and Reliability Engineering International, 2020, 36, 1949-1968.	2.3	22
52	On Phase-I Monitoring of Process Location Parameter with Auxiliary Information-Based Median Control Charts. Mathematics, 2020, 8, 706.	2.2	4
53	Performance evaluation of moving average-based EWMA chart for exponentially distributed process. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2020, 43, 365-372.	1.1	5
54	Cumulative Sum Chart Modeled under the Presence of Outliers. Mathematics, 2020, 8, 269.	2.2	16

#	Article	IF	CITATIONS
55	Outliers Detection Models in Shewhart Control Charts; an Application in Photolithography: A Semiconductor Manufacturing Industry. Mathematics, 2020, 8, 857.	2.2	12
56	Enhanced nonparametric control charts under simple and ranked set sampling schemes. Transactions of the Institute of Measurement and Control, 2020, 42, 2744-2759.	1.7	24
57	New efficient exponentially weighted moving average variability charts based on auxiliary information. Quality and Reliability Engineering International, 2020, 36, 2203-2224.	2.3	10
58	A double homogeneously weighted moving average control chart for monitoring of the process mean. Quality and Reliability Engineering International, 2020, 36, 1513-1527.	2.3	38
59	On designing a sequential based EWMA structure for efficient process monitoring. Journal of Taibah University for Science, 2020, 14, 177-191.	2.5	6
60	Use of Nonconventional Dispersion Measures to Improve the Efficiency of Ratio-Type Estimators of Variance in the Presence of Outliers. Symmetry, 2020, 12, 16.	2.2	4
61	Generalized skewness correction structure of XÌ,, control chart for unknown process parameters and skewed probability distributions. Journal of Statistical Computation and Simulation, 2020, 90, 1349-1372.	1.2	5
62	On designing a progressive mean chart for efficient monitoring of process location. Quality and Reliability Engineering International, 2020, 36, 1716-1730.	2.3	20
63	On handling inertia problem of memory charts using break approach. Quality and Reliability Engineering International, 2020, 36, 1708-1715.	2.3	2
64	Investigation of Corrosion Rate of Mild Steel in Fruit Juice Environment Using Factorial Experimental Design. International Journal of Corrosion, 2020, 2020, 1-10.	1.1	8
65	On enhanced estimation of population variance using unconventional measures of an auxiliary variable. Journal of Statistical Computation and Simulation, 2020, 90, 2180-2197.	1.2	3
66	A Comparative Analysis of Robust Dispersion Control Charts with Application Related to Health Care Data. Journal of Testing and Evaluation, 2020, 48, 247-259.	0.7	5
67	A 3-Component Mixture of Exponential Distribution Assuming Doubly Censored Data: Properties and Bayesian Estimation. Journal of Statistical Theory and Applications, 2020, 19, 197.	0.9	5
68	New Dual Auxiliary Information-Based EWMA Control Chart with an Application in Physicochemical Parameters of Ground Water. Iranian Journal of Science and Technology, Transaction A: Science, 2019, 43, 1171-1190.	1.5	15
69	An Efficient Phase I Analysis of Linear Profiles with Application in Photo-Voltaic System. Arabian Journal for Science and Engineering, 2019, 44, 2699-2716.	3.0	18
70	Robust adaptive exponentially weighted moving average control charts with applications of manufacturing processes. International Journal of Advanced Manufacturing Technology, 2019, 105, 733-748.	3.0	13
71	On improved dispersion control charts under ranked set schemes for normal and nonâ€normal processes. Quality and Reliability Engineering International, 2019, 35, 1313-1341.	2.3	11
72	An Assorted Design for Joint Monitoring of Process Parameters: An Efficient Approach for Fuel Consumption. IEEE Access, 2019, 7, 104864-104875.	4.2	2

#	Article	IF	CITATIONS
73	Efficient Phase II Monitoring Methods for Linear Profiles Under the Random Effect Model. IEEE Access, 2019, 7, 148278-148296.	4.2	14
74	Assorted control charts: An efficient statistical approach to monitor pH values in ecotoxicology lab. Journal of Chemometrics, 2019, 33, e3129.	1.3	10
75	On improved monitoring of linear profiles under modified successive sampling. Quality and Reliability Engineering International, 2019, 35, 2202-2227.	2.3	17
76	An adaptive approach to EWMA dispersion chart using Huber and Tukey functions. Quality and Reliability Engineering International, 2019, 35, 1542-1581.	2.3	25
77	An enhanced nonparametric EWMA sign control chart using sequential mechanism. PLoS ONE, 2019, 14, e0225330.	2.5	9
78	An enhanced approach for the progressive mean control charts. Quality and Reliability Engineering International, 2019, 35, 1046-1060.	2.3	31
79	On auxiliary information-based control charts for autocorrelated processes with application in manufacturing industry. International Journal of Advanced Manufacturing Technology, 2019, 100, 1965-1980.	3.0	17
80	On designing Maxwell CUSUM control chart: an efficient way to monitor failure rates in boring processes. International Journal of Advanced Manufacturing Technology, 2019, 100, 1923-1930.	3.0	24
81	A Bayesian way of monitoring the linear profiles using CUSUM control charts. Communications in Statistics Part B: Simulation and Computation, 2019, 48, 126-149.	1.2	17
82	New Interquartile Range EWMA Control Charts with Applications in Continuous Stirred Tank Rector Process. Arabian Journal for Science and Engineering, 2019, 44, 2467-2485.	3.0	14
83	Robust dual-CUSUM control charts for contaminated processes. Communications in Statistics Part B: Simulation and Computation, 2019, 48, 2177-2190.	1.2	10
84	A progressive approach to joint monitoring of process parameters. Computers and Industrial Engineering, 2018, 115, 253-268.	6.3	35
85	On designing a robust double exponentially weighted moving average control chart for process monitoring. Transactions of the Institute of Measurement and Control, 2018, 40, 4253-4265.	1.7	14
86	On efficient CUSUM-type location control charts using auxiliary information. Quality Technology and Quantitative Management, 2018, 15, 87-105.	1.9	38
87	In-control robustness comparison of different control charts. Transactions of the Institute of Measurement and Control, 2018, 40, 3860-3871.	1.7	15
88	On Designing Mixed EWMA Dual-CUSUM Chart With Applications in Petro-Chemical Industry. IEEE Access, 2018, 6, 78931-78946.	4.2	9
89	Bayesian Monitoring of Linear Profiles Using DEWMA Control Structures With Random \$X\$. IEEE Access, 2018, 6, 78370-78385.	4.2	16
90	Insights on the responses of Brassica napus cultivars against the cobalt-stress as revealed by carbon assimilation, anatomical changes and secondary metabolites. Environmental and Experimental Botany, 2018, 156, 183-196.	4.2	32

#	Article	IF	CITATIONS
91	Simultaneous monitoring of linear profile parameters under progressive setup. Computers and Industrial Engineering, 2018, 125, 434-450.	6.3	36
92	Alternative methods for the simultaneous monitoring of simple linear profile parameters. International Journal of Advanced Manufacturing Technology, 2018, 97, 2851-2871.	3.0	46
93	On designing a new cumulative sum Wilcoxon signed rank chart for monitoring process location. PLoS ONE, 2018, 13, e0195762.	2.5	18
94	Comparative orchestrating response of four oilseed rape (Brassica napus) cultivars against the selenium stress as revealed by physio-chemical, ultrastructural and molecular profiling. Ecotoxicology and Environmental Safety, 2018, 161, 634-647.	6.0	28
95	On the performance of <i>XÌ,,</i> control chart for known and unknown parameters supplemented with runs rules under different probability distributions. Journal of Statistical Computation and Simulation, 2018, 88, 675-711.	1.2	20
96	Enhancing ratio estimators for estimating population mean using maximum value of auxiliary variable. Journal of the National Science Foundation of Sri Lanka, 2018, 46, 453.	0.2	3
97	Mixed multivariate EWMA-CUSUM control charts for an improved process monitoring. Communications in Statistics - Theory and Methods, 2017, 46, 6980-6993.	1.0	47
98	Bivariate Dispersion Control Charts for Monitoring Nonâ€Normal Processes. Quality and Reliability Engineering International, 2017, 33, 515-529.	2.3	8
99	On the Performance of Control Charts for Simultaneous Monitoring of Location and Dispersion Parameters. Quality and Reliability Engineering International, 2017, 33, 37-56.	2.3	16
100	Simultaneous Use of Runs Rules and Auxiliary Information With Exponentially Weighted Moving Average Control Charts. Quality and Reliability Engineering International, 2017, 33, 323-336.	2.3	30
101	Investigating the Impact of Ranked Set Sampling in Nonparametric CUSUM Control Charts. Quality and Reliability Engineering International, 2017, 33, 203-214.	2.3	33
102	Linear profile monitoring using EWMA structure under ranked set schemes. International Journal of Advanced Manufacturing Technology, 2017, 91, 2751-2775.	3.0	46
103	A communicative property with its industrial applications. Quality and Reliability Engineering International, 2017, 33, 2761-2763.	2.3	5
104	Bayesian monitoring of linear profile monitoring using DEWMA charts. Quality and Reliability Engineering International, 2017, 33, 1783-1812.	2.3	26
105	Mixed Tukey EWMA-CUSUM control chart and its applications. Quality Technology and Quantitative Management, 2017, 14, 378-411.	1.9	30
106	New <i>V</i> control chart for the Maxwell distribution. Journal of Statistical Computation and Simulation, 2017, 87, 594-606.	1.2	25
107	Soymilk-Cow's milk ACE-inhibiting enzyme modified cheese. Food Chemistry, 2017, 237, 1083-1091.	8.2	16
108	Mixed EWMA-CUSUM and mixed CUSUM-EWMA modified control charts for monitoring first order autoregressive processes. Quality Technology and Quantitative Management, 2017, 14, 429-453.	1.9	30

7

#	Article	IF	CITATIONS
109	Optimization design of the <scp>CUSUM</scp> and <scp>EWMA</scp> charts for autocorrelated processes. Quality and Reliability Engineering International, 2017, 33, 1827-1841.	2.3	6
110	An EWMA monitoring scheme with a single auxiliary variable for industrial processes. Computers and Industrial Engineering, 2017, 114, 1-10.	6.3	42
111	On Bayesian EWMA control charts under different loss functions. Quality and Reliability Engineering International, 2017, 33, 2653-2665.	2.3	11
112	An adaptive EWMA schemeâ€based CUSUM accumulation error for efficient monitoring of process location. Quality and Reliability Engineering International, 2017, 33, 2463-2482.	2.3	25
113	On Model Selection for Autocorrelated Processes in Statistical Process Control. Quality and Reliability Engineering International, 2017, 33, 867-882.	2.3	7
114	An Efficient Nonparametric EWMA Wilcoxon Signedâ€Rank Chart for Monitoring Location. Quality and Reliability Engineering International, 2017, 33, 669-685.	2.3	52
115	An Improved S ² Control Chart for Cost and Efficiency Optimization. IEEE Access, 2017, 5, 19486-19493.	4.2	11
116	A New EWMA Control Chart for Monitoring Poisson Observations. Quality and Reliability Engineering International, 2016, 32, 3023-3033.	2.3	25
117	Use of ranked set sampling in nonparametric control charts. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2016, 39, 627-636.	1.1	30
118	Combined Application of Shewhart and Cumulative Sum <i>R</i> Chart for Monitoring Process Dispersion. Quality and Reliability Engineering International, 2016, 32, 51-67.	2.3	11
119	Online monitoring of climatic parameters: a statistical study about environmental changes in Qatar. Qscience Proceedings, 2016, 2016, 42.	0.0	0
120	Robust Tukey–CUSUM Control Chart for Process Monitoring. Quality and Reliability Engineering International, 2016, 32, 933-948.	2.3	19
121	A New Combined Shewhart–Cumulative Sum <i>S</i> Chart for Monitoring Process Standard Deviation. Quality and Reliability Engineering International, 2016, 32, 1149-1165.	2.3	10
122	On Effective Dual Use of Auxiliary Information in Variability Control Charts. Quality and Reliability Engineering International, 2016, 32, 1417-1443.	2.3	37
123	On Dual Use of Auxiliary Information for Efficient Monitoring. Quality and Reliability Engineering International, 2016, 32, 705-714.	2.3	41
124	EWMA Control Chart for Poisson–Exponential Lifetime Distribution Under Type I Censoring. Quality and Reliability Engineering International, 2016, 32, 995-1005.	2.3	33
125	On designing a new Tukey-EWMA control chart for process monitoring. International Journal of Advanced Manufacturing Technology, 2016, 82, 1-23.	3.0	74
126	On increasing the sensitivity of mixed EWMA–CUSUM control charts for locationÂparameter. Journal of Applied Statistics, 2016, 43, 1262-1278.	1.3	19

#	Article	IF	CITATIONS
127	On the Efficiency of Runs Rules Schemes for Process Monitoring. Quality and Reliability Engineering International, 2016, 32, 663-671.	2.3	7
128	Enhancing the Mean Ratio Estimators for Estimating Population Mean Using Non-Conventional Location Parameters. Revista Colombiana De Estadistica, 2016, 39, 63-79.	0.4	24
129	Improved Ratio Estimators for the Population Mean Using Non-Conventional Measures of Dispersion. Pakistan Journal of Statistics and Operation Research, 2016, 12, 353.	1.1	16
130	Some improved modified ratio estimators based on decile mean of an auxiliary variable. Pakistan Journal of Statistics and Operation Research, 2016, 12, 787.	1.1	3
131	On a Correlated Variance Ratio Distribution and Its Industrial Application. Communications in Statistics - Theory and Methods, 2015, 44, 261-274.	1.0	4
132	Mixed Cumulative Sum–Exponentially Weighted Moving Average Control Charts: An Efficient Way of Monitoring Process Location. Quality and Reliability Engineering International, 2015, 31, 1407-1421.	2.3	83
133	Increasing the Sensitivity of Cumulative Sum Charts for Location. Quality and Reliability Engineering International, 2015, 31, 1035-1051.	2.3	15
134	Enhanced Cumulative Sum Charts for Monitoring Process Dispersion. PLoS ONE, 2015, 10, e0124520.	2.5	21
135	A sensitive non-parametric EWMA control chart. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2015, 38, 208-219.	1.1	22
136	On the Performance of Phase I Dispersion Control Charts for Process Monitoring. Quality and Reliability Engineering International, 2015, 31, 1705-1716.	2.3	23
137	EWMA Dispersion Control Charts for Normal and Nonâ€normal Processes. Quality and Reliability Engineering International, 2015, 31, 1691-1704.	2.3	40
138	On Enhanced Interquartile Range Charting for Process Dispersion. Quality and Reliability Engineering International, 2015, 31, 389-398.	2.3	19
139	Robust CUSUM Control Charting for Process Dispersion. Quality and Reliability Engineering International, 2015, 31, 369-379.	2.3	19
140	Control charting and survey sampling techniques in process monitoring. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2015, 38, 342-354.	1.1	31
141	Performance of Tukey's and Individual/Moving Range Control Charts. Quality and Reliability Engineering International, 2015, 31, 1063-1077.	2.3	15
142	An EWMA-Type Control Chart for Monitoring the Process Mean Using Auxiliary Information. Communications in Statistics - Theory and Methods, 2014, 43, 3485-3498.	1.0	117
143	Memoryâ€Type Control Charts for Monitoring the Process Dispersion. Quality and Reliability Engineering International, 2014, 30, 623-632.	2.3	29
144	Quality Quandaries: How to Set Up a Robust Shewhart Control Chart for Dispersion?. Quality Engineering, 2014, 26, 130-136.	1.1	11

#	Article	IF	CITATIONS
145	Progressive Variance Control Charts for Monitoring Process Dispersion. Communications in Statistics - Theory and Methods, 2014, 43, 4893-4907.	1.0	28
146	Improving the Performance of Exponentially Weighted Moving Average Control Charts. Quality and Reliability Engineering International, 2014, 30, 571-590.	2.3	44
147	On efficient phase II process monitoring charts. International Journal of Advanced Manufacturing Technology, 2014, 70, 2263-2274.	3.0	29
148	On efficient use of auxiliary information for control charting in SPC. Computers and Industrial Engineering, 2014, 67, 173-184.	6.3	56
149	On efficient median control charting. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2014, 37, 358-375.	1.1	55
150	Process Monitoring Using Quantiles Control Charts. Journal of Testing and Evaluation, 2014, 42, 20130026.	0.7	11
151	Monitoring of Process Parameters Under Measurement Errors. Journal of Testing and Evaluation, 2014, 42, 20130116.	0.7	9
152	Mixed Exponentially Weighted Moving Average–Cumulative Sum Charts for Process Monitoring. Quality and Reliability Engineering International, 2013, 29, 345-356.	2.3	160
153	Progressive Mean Control Chart for Monitoring Process Location Parameter. Quality and Reliability Engineering International, 2013, 29, 357-367.	2.3	55
154	CSâ€EWMA Chart for Monitoring Process Dispersion. Quality and Reliability Engineering International, 2013, 29, 653-663.	2.3	55
155	Efficient power computation for r out of m runs rules schemes. Computational Statistics, 2013, 28, 667-681.	1.5	21
156	Mixture cumulative count control chart for mixture geometric process characteristics. Quality and Quantity, 2013, 47, 2289-2307.	3.7	13
157	Improving the Performance of Combined Shewhart–Cumulative Sum Control Charts. Quality and Reliability Engineering International, 2013, 29, 1193-1206.	2.3	33
158	On monitoring process variability under double sampling scheme. International Journal of Production Economics, 2013, 142, 388-400.	8.9	62
159	Robust CUSUM Control Charting. Quality Engineering, 2013, 25, 211-224.	1.1	42
160	Control charts for location based on different sampling schemes. Journal of Applied Statistics, 2013, 40, 483-494.	1.3	74
161	Nonparametric Progressive Mean Control Chart for Monitoring Process Target. Quality and Reliability Engineering International, 2013, 29, 1069-1080.	2.3	44
162	Enhancing the Performance of Combined Shewhart‣WMA Charts. Quality and Reliability Engineering International, 2013, 29, 1093-1106.	2.3	45

#	Article	IF	CITATIONS
163	On the Performance of Auxiliaryâ€based Control Charting under Normality and Nonnormality with Estimation Effects. Quality and Reliability Engineering International, 2013, 29, 1165-1179.	2.3	50
164	Performance Evaluation of Different Tests for Location Parameters. Communications in Statistics Part B: Simulation and Computation, 2011, 40, 839-853.	1.2	2
165	Improving the performance of CUSUM charts. Quality and Reliability Engineering International, 2011, 27, 415-424.	2.3	88
166	Enhancing the performance of EWMA charts. Quality and Reliability Engineering International, 2011, 27, 821-833.	2.3	97
167	An improved control chart structure for process location parameter. Quality and Reliability Engineering International, 2011, 27, 1033-1041.	2.3	18
168	On the performance of different control charting rules. Quality and Reliability Engineering International, 2011, 27, 1059-1067.	2.3	51
169	Gini's Mean Difference Based Time-Varying EWMA Charts. Economic Quality Control, 2009, 24, .	0.3	3
170	A process variability control chart. Computational Statistics, 2009, 24, 345-368.	1.5	50
171	Design schemes for the XÌ,, control chart. Quality and Reliability Engineering International, 2009, 25, 581-594.	2.3	28
172	A mean deviation-based approach to monitor process variability. Journal of Statistical Computation and Simulation, 2009, 79, 1173-1193.	1.2	32
173	Monitoring process variability using auxiliary information. Computational Statistics, 2008, 23, 253-276.	1.5	59
174	Monitoring process mean level using auxiliary information. Statistica Neerlandica, 2008, 62, 458-481.	1.6	100
175	A Dispersion Control Chart. Communications in Statistics Part B: Simulation and Computation, 2008, 37, 1239-1261.	1.2	49
176	An Alternative to the Bivariate Control Chart for Process Dispersion. Quality Engineering, 2008, 21, 63-71.	1.1	21
177	Monitoring Process Variability Using Gini's Mean Difference. Quality Technology and Quantitative Management, 2007, 4, 439-454.	1.9	26
178	Probability Weighted Moments Approach to Quality Control Charts. Economic Quality Control, 2006, 21, .	0.3	3
179	On developing robust adaptive approaches for monitoring location of nonâ€normal environments. Quality and Reliability Engineering International, 0, , .	2.3	2
180	Violating the standard assumption underlying the process monitoring: Perfect measurements. Quality and Reliability Engineering International, 0, , .	2.3	0

#	Article	IF	CITATIONS
181	Progressive mean as a special case of exponentially weighted moving average: Discussion. Quality and Reliability Engineering International, 0, , .	2.3	3
182	Design and analysis of exponentially weighted moving average control charts for monitoring the variability of logâ€normal processes with estimated parameters. Quality and Reliability Engineering International, 0, , .	2.3	3
183	Outliers' detection with a sensitive exponentially weighted moving average control chart. Quality and Reliability Engineering International, 0, , .	2.3	Ο