Yasser B Ruiz-Blanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/191431/publications.pdf

Version: 2024-02-01

687220 580701 33 747 13 25 citations h-index g-index papers 34 34 34 1183 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of Organic Solvents on the Structure and Activity of a Minimal Lipase. Journal of Organic Chemistry, 2022, 87, 1669-1678.	1.7	10
2	The role of DNA nanostructures in the catalytic properties of an allosterically regulated protease. Science Advances, 2022, 8, eabk0425.	4.7	16
3	Selective Disruption of Survivin's Proteinâ€Protein Interactions: A Supramolecular Approach Based on Guanidiniocarbonylpyrrole. ChemBioChem, 2022, , e202100618.	1.3	3
4	Computational Design of Inhibitors Targeting the Catalytic \hat{l}^2 Subunit of Escherichia coli FOF1-ATP Synthase. Antibiotics, 2022, 11, 557.	1.5	3
5	PPI-Affinity: A Web Tool for the Prediction and Optimization of Protein–Peptide and Protein–Protein Binding Affinity. Journal of Proteome Research, 2022, 21, 1829-1841.	1.8	24
6	Engineering protein fragments via evolutionary and protein–protein interaction algorithms: <i>de novo</i> design of peptide inhibitors for F _O F ₁ â€ATP synthase. FEBS Letters, 2021, 595, 183-194.	1.3	3
7	Specific inhibition of the Survivin–CRM1 interaction by peptide-modified molecular tweezers. Nature Communications, 2021, 12, 1505.	5.8	18
8	Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection. Nature Communications, 2021, 12, 1726.	5.8	86
9	Inhibition of Staphylococcus aureus biofilm-forming functional amyloid by molecular tweezers. Cell Chemical Biology, 2021, 28, 1310-1320.e5.	2.5	15
10	Adoption of a Turn Conformation Drives the Binding Affinity of p53 C-Terminal Domain Peptides to 14-3-3 if. ACS Chemical Biology, 2020, 15, 262-271.	1.6	10
11	Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Advanced Drug Delivery Reviews, 2020, 167, 47-65.	6.6	132
12	Proteome-wide Prediction of Lysine Methylation Leads to Identification of H2BK43 Methylation and Outlines the Potential Methyllysine Proteome. Cell Reports, 2020, 32, 107896.	2.9	17
13	Respiratory ß-2-Microglobulin exerts pH dependent antimicrobial activity. Virulence, 2020, 11, 1402-1414.	1.8	9
14	Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers. Journal of the American Chemical Society, 2020, 142, 17024-17038.	6.6	31
15	CL-FEP: An End-State Free Energy Perturbation Approach. Journal of Chemical Theory and Computation, 2020, 16, 1396-1410.	2.3	8
16	A Placenta Derived C-Terminal Fragment of \hat{l}^2 -Hemoglobin With Combined Antibacterial and Antiviral Activity. Frontiers in Microbiology, 2020, 11, 508.	1.5	23
17	Control of TLR7-mediated type I IFN signaling in pDCs through CXCR4 engagement—A new target for lupus treatment. Science Advances, 2019, 5, eaav9019.	4.7	34
18	<i>ProtDCalâ€Suite</i> : A web server for the numerical codification and functional analysis of proteins. Protein Science, 2019, 28, 1734-1743.	3.1	19

#	Article	IF	CITATIONS
19	Multivalent Ligands with Tailorâ€Made Anion Binding Motif as Stabilizers of Protein–Protein Interactions. ChemBioChem, 2019, 20, 2921-2926.	1.3	13
20	PPlâ€Detect: A support vector machine model for sequenceâ€based prediction of protein–protein interactions. Journal of Computational Chemistry, 2019, 40, 1233-1242.	1.5	54
21	Mono―and Bivalent 14â€3â€3 Inhibitors for Characterizing Supramolecular "Lysine Wrapping―of Oligoethylene Glycol (OEG) Moieties in Proteins. Chemistry - A European Journal, 2018, 24, 13807-13814.	1.7	6
22	Novel "extended sequons―of human N-glycosylation sites improve the precision of qualitative predictions: an alignment-free study of pattern recognition using ProtDCal protein features. Amino Acids, 2017, 49, 317-325.	1.2	10
23	Unveiled electric profiles within hydrogen bonds suggest DNA base pairs with similar bond strengths. PLoS ONE, 2017, 12, e0185638.	1.1	5
24	Exploring general-purpose protein features for distinguishing enzymes and non-enzymes within the twilight zone. BMC Bioinformatics, 2017, 18, 349.	1.2	10
25	Orthotropic Piezoelectricity in 2D Nanocellulose. Scientific Reports, 2016, 6, 34616.	1.6	32
26	ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins. BMC Bioinformatics, 2015, 16, 162.	1.2	58
27	Optical and mechanical properties of nanofibrillated cellulose: Toward a robust platform for next-generation green technologies. Carbohydrate Polymers, 2015, 126, 40-46.	5.1	45
28	A Hooke×3s law-based approach to protein folding rate. Journal of Theoretical Biology, 2015, 364, 407-417.	0.8	9
29	A physics-based scoring function for protein structural decoys: Dynamic testing on targets of CASP-ROLL. Chemical Physics Letters, 2014, 610-611, 135-140.	1.2	7
30	Global stability of protein folding from an empirical free energy function. Journal of Theoretical Biology, 2013, 321, 44-53.	0.8	13
31	STUDY BASED ON ELECTRONIC DESCRIPTORS OF THE DIASTEREOSELECTIVE AZA-DIELS-ALDER CYCLOADDITION OF [(1R)-10-(N,N-DIETHYLSULFAMOYL)ISOBORNYL] 2H-AZIRINE-3-CARBOXYLATE TO E,E-1,4-DIACETOXY-1,3-BUTADIENE. Journal of the Chilean Chemical Society, 2013, 58, 2243-2247.	0.5	1
32	New set of 2D/3D thermodynamic indices for proteins. A formalism based on "Molten Globule―theory. Physics Procedia, 2010, 8, 63-72.	1.2	8
33	Quantitative structure activity relationship of IA ₃ â€like peptides as aspartic proteinase inhibitors. Proteins: Structure, Function and Bioinformatics, 2009, 75, 859-869.	1.5	10