
Roshan Cools

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1913862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inverted-U–Shaped Dopamine Actions on Human Working Memory and Cognitive Control. Biological Psychiatry, 2011, 69, e113-e125.	1.3	1,315
2	Enhanced or Impaired Cognitive Function in Parkinson's Disease as a Function of Dopaminergic Medication and Task Demands. Cerebral Cortex, 2001, 11, 1136-1143.	2.9	795
3	Dopaminergic modulation of cognitive function-implications for I-DOPA treatment in Parkinson's disease. Neuroscience and Biobehavioral Reviews, 2006, 30, 1-23.	6.1	778
4	Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging. Journal of Neuroscience, 2002, 22, 4563-4567.	3.6	631
5	Serotoninergic regulation of emotional and behavioural control processes. Trends in Cognitive Sciences, 2008, 12, 31-40.	7.8	544
6	l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia, 2003, 41, 1431-1441.	1.6	457
7	Dopaminergic modulation of high-level cognition in Parkinson's disease: the role of the prefrontal cortex revealed by PET. Brain, 2002, 125, 584-594.	7.6	382
8	Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions. Neuropsychopharmacology, 2011, 36, 98-113.	5.4	382
9	The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning. Brain and Cognition, 2004, 55, 41-53.	1.8	363
10	Mechanisms of cognitive set flexibility in Parkinson's disease. Brain, 2001, 124, 2503-2512.	7.6	344
11	Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its Sensitivity to Dopaminergic Drug Administration. Journal of Neuroscience, 2009, 29, 1538-1543.	3.6	315
12	Disentangling the Roles of Approach, Activation and Valence in Instrumental and Pavlovian Responding. PLoS Computational Biology, 2011, 7, e1002028.	3.2	292
13	Role of Dopamine in the Motivational and Cognitive Control of Behavior. Neuroscientist, 2008, 14, 381-395.	3.5	288
14	Reversal learning in Parkinson's disease depends on medication status and outcome valence. Neuropsychologia, 2006, 44, 1663-1673.	1.6	272
15	Working Memory Capacity Predicts Dopamine Synthesis Capacity in the Human Striatum. Journal of Neuroscience, 2008, 28, 1208-1212.	3.6	264
16	Mechanisms of motivation–cognition interaction: challenges and opportunities. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 443-472.	2.0	263
17	L-DOPA Disrupts Activity in the Nucleus Accumbens during Reversal Learning in Parkinson's Disease. Neuropsychopharmacology, 2007, 32, 180-189.	5.4	262
18	Impulsive Personality Predicts Dopamine-Dependent Changes in Frontostriatal Activity during Component Processes of Working Memory. Journal of Neuroscience, 2007, 27, 5506-5514.	3.6	239

#	Article	IF	CITATIONS
19	Dopamine Release in Dissociable Striatal Subregions Predicts the Different Effects of Oral Methylphenidate on Reversal Learning and Spatial Working Memory. Journal of Neuroscience, 2009, 29, 4690-4696.	3.6	210
20	Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 2013, 80, 1090-1100.	8.1	210
21	Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science, 2020, 367, 1362-1366.	12.6	204
22	Ventral Striatum Response During Reward and Punishment Reversal Learning in Unmedicated Major Depressive Disorder. American Journal of Psychiatry, 2012, 169, 152-159.	7.2	203
23	Chemistry of the adaptive mind. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2871-2888.	3.4	199
24	Differential Responses in Human Striatum and Prefrontal Cortex to Changes in Object and Rule Relevance. Journal of Neuroscience, 2004, 24, 1129-1135.	3.6	199
25	Cognitive deficits in Parkinson's disease: A cognitive neuroscience perspective. Movement Disorders, 2014, 29, 597-607.	3.9	192
26	Serotonergic Modulation of Prefrontal Cortex during Negative Feedback in Probabilistic Reversal Learning. Neuropsychopharmacology, 2005, 30, 1138-1147.	5.4	188
27	Feedback-related Negativity Codes Prediction Error but Not Behavioral Adjustment during Probabilistic Reversal Learning. Journal of Cognitive Neuroscience, 2011, 23, 936-946.	2.3	186
28	Dopaminergic control of the striatum for high-level cognition. Current Opinion in Neurobiology, 2011, 21, 402-407.	4.2	182
29	Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. NeuroImage, 2014, 87, 356-362.	4.2	182
30	Striatal Dopamine and the Interface between Motivation and Cognition. Frontiers in Psychology, 2011, 2, 163.	2.1	177
31	Using executive heterogeneity to explore the nature of working memory deficits in Parkinson's disease. Neuropsychologia, 2003, 41, 645-654.	1.6	173
32	Goal neglect and inhibitory limitations: dissociable causes of interference effects in conflict situations. Acta Psychologica, 1999, 101, 379-394.	1.5	166
33	Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: implications for the 5-HT theory of impulsivity. Psychopharmacology, 2005, 182, 570-578.	3.1	154
34	Stratified medicine for mental disorders. European Neuropsychopharmacology, 2014, 24, 5-50.	0.7	152
35	Acute Tryptophan Depletion in Healthy Volunteers Enhances Punishment Prediction but Does not Affect Reward Prediction. Neuropsychopharmacology, 2008, 33, 2291-2299.	5.4	145
36	The Human Basal Ganglia Modulate Frontal-Posterior Connectivity during Attention Shifting. Journal of Neuroscience, 2010, 30, 9910-9918.	3.6	142

#	Article	IF	CITATIONS
37	Striatal Dopamine Mediates the Interface between Motivational and Cognitive Control in Humans: Evidence from Genetic Imaging. Neuropsychopharmacology, 2010, 35, 1943-1951.	5.4	141
38	Individual differences in threat sensitivity predict serotonergic modulation of amygdala response to fearful faces. Psychopharmacology, 2005, 180, 670-679.	3.1	139
39	Tryptophan Depletion Disrupts the Motivational Guidance of Goal-Directed Behavior as a Function of Trait Impulsivity. Neuropsychopharmacology, 2005, 30, 1362-1373.	5.4	130
40	Enhanced frontal function in Parkinson's disease. Brain, 2010, 133, 225-233.	7.6	120
41	Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda. Neuroscience and Biobehavioral Reviews, 2017, 78, 13-23.	6.1	118
42	Human cognitive flexibility depends on dopamine D2 receptor signaling. Psychopharmacology, 2011, 218, 567-578.	3.1	109
43	The Human Striatum is Necessary for Responding to Changes in Stimulus Relevance. Journal of Cognitive Neuroscience, 2006, 18, 1973-1983.	2.3	102
44	Methylphenidate Has Differential Effects on Blood Oxygenation Level-Dependent Signal Related to Cognitive Subprocesses of Reversal Learning. Journal of Neuroscience, 2008, 28, 5976-5982.	3.6	102
45	Habitual versus Goal-directed Action Control in Parkinson Disease. Journal of Cognitive Neuroscience, 2011, 23, 1218-1229.	2.3	102
46	GABAergic Modulation of Visual Gamma and Alpha Oscillations and Its Consequences for Working Memory Performance. Current Biology, 2014, 24, 2878-2887.	3.9	100
47	Increased Striatal Dopamine Synthesis Capacity in Gambling Addiction. Biological Psychiatry, 2018, 83, 1036-1043.	1.3	97
48	Dopaminergic Modulation of Cognitive Control: Distinct Roles for the Prefrontal Cortex and the Basal Ganglia. Current Pharmaceutical Design, 2010, 16, 2026-2032.	1.9	94
49	Increased Neural Responses to Reward in Adolescents and Young Adults With Attention-Deficit/Hyperactivity Disorder and Their Unaffected Siblings. Journal of the American Academy of Child and Adolescent Psychiatry, 2015, 54, 394-402.	0.5	94
50	Nitric Oxide Synthase Genotype Modulation of Impulsivity and Ventral Striatal Activity in Adult ADHD Patients and Healthy Comparison Subjects. American Journal of Psychiatry, 2011, 168, 1099-1106.	7.2	92
51	Aversive Pavlovian Control of Instrumental Behavior in Humans. Journal of Cognitive Neuroscience, 2013, 25, 1428-1441.	2.3	92
52	Chemistry of the Adaptive Mind: Lessons from Dopamine. Neuron, 2019, 104, 113-131.	8.1	92
53	Effects of levodopa and subthalamic nucleus stimulation on cognitive and affective functioning in Parkinson's disease. Movement Disorders, 2006, 21, 1656-1662.	3.9	87
54	Establishing the Dopamine Dependency of Human Striatal Signals During Reward and Punishment Reversal Learning. Cerebral Cortex, 2014, 24, 633-642.	2.9	83

#	Article	IF	CITATIONS
55	The costs and benefits of brain dopamine for cognitive control. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7, 317-329.	2.8	83
56	Serotonin Transporter Polymorphism Mediates Vulnerability to Loss of Incentive Motivation Following Acute Tryptophan Depletion. Neuropsychopharmacology, 2006, 31, 2264-2272.	5.4	82
57	Induction and Relief of Curiosity Elicit Parietal and Frontal Activity. Journal of Neuroscience, 2018, 38, 2579-2588.	3.6	82
58	Catecholaminergic challenge uncovers distinct Pavlovian and instrumental mechanisms of motivated (in)action. ELife, 2017, 6, .	6.0	77
59	Decomposing effects of dopaminergic medication in Parkinson's disease on probabilistic action selection – learning or performance?. European Journal of Neuroscience, 2012, 35, 1144-1151.	2.6	73
60	Impaired Activation in Cognitive Control Regions Predicts Reversal Learning in Schizophrenia. Schizophrenia Bulletin, 2016, 42, 484-493.	4.3	73
61	Top–Down Attentional Control in Parkinson's Disease: Salient Considerations. Journal of Cognitive Neuroscience, 2010, 22, 848-859.	2.3	68
62	Converging evidence for central 5-HT effects in acute tryptophan depletion. Molecular Psychiatry, 2012, 17, 121-123.	7.9	66
63	Tryptophan depletion disinhibits punishment but not reward prediction: implications for resilience. Psychopharmacology, 2012, 219, 599-605.	3.1	66
64	Spontaneous eye blink rate and dopamine synthesis capacity: preliminary evidence for an absence of positive correlation. European Journal of Neuroscience, 2018, 47, 1081-1086.	2.6	66
65	Loss of lateral prefrontal cortex control in food-directed attention and goal-directed food choice in obesity. Neurolmage, 2017, 146, 148-156.	4.2	65
66	Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology, 2022, 47, 309-328.	5.4	64
67	Dissociable responses to punishment in distinct striatal regions during reversal learning. NeuroImage, 2010, 51, 1459-1467.	4.2	62
68	Controlling Human Striatal Cognitive Function via the Frontal Cortex. Journal of Neuroscience, 2012, 32, 5631-5637.	3.6	60
69	The specificity of Pavlovian regulation is associated with recovery from depression. Psychological Medicine, 2016, 46, 1027-1035.	4.5	60
70	Aberrant reward processing in Parkinson's disease is associated with dopamine cell loss. NeuroImage, 2012, 59, 3339-3346.	4.2	58
71	Serotonin and Aversive Pavlovian Control of Instrumental Behavior in Humans. Journal of Neuroscience, 2013, 33, 18932-18939.	3.6	56
72	Incentive motivation in first-episode psychosis: A behavioural study. BMC Psychiatry, 2008, 8, 34.	2.6	55

#	Article	IF	CITATIONS
73	Switching between abstract rules reflects disease severity but not dopaminergic status in Parkinson's disease. Neuropsychologia, 2009, 47, 1117-1127.	1.6	55
74	Distinct linear and non-linear trajectories of reward and punishment reversal learning during development: Relevance for dopamine's role in adolescent decision making. Developmental Cognitive Neuroscience, 2011, 1, 578-590.	4.0	55
75	Dopamine and the Cognitive Downside of a Promised Bonus. Psychological Science, 2014, 25, 1003-1009.	3.3	55
76	Stress and Cognitive Flexibility: Cortisol Increases Are Associated with Enhanced Updating but Impaired Switching. Journal of Cognitive Neuroscience, 2017, 29, 14-24.	2.3	55
77	Working Memory Capacity Predicts Effects of Methylphenidate on Reversal Learning. Neuropsychopharmacology, 2013, 38, 2011-2018.	5.4	54
78	Greater striatal responses to medication in Parkinson× ³ s disease are associated with better task-switching but worse reward performance. Neuropsychologia, 2014, 62, 390-397.	1.6	54
79	Iowa gambling task impairment in Parkinson's disease can be normalised by reduction of dopaminergic medication after subthalamic stimulation. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 186-190.	1.9	50
80	CNTRICS Final Task Selection: Long-Term Memory. Schizophrenia Bulletin, 2009, 35, 197-212.	4.3	49
81	Feedback-related negativity codes outcome valence, but not outcome expectancy, during reversal learning. Cognitive, Affective and Behavioral Neuroscience, 2013, 13, 737-746.	2.0	48
82	Dissociable fronto-striatal effects of dopamine D2 receptor stimulation on cognitive versusÂmotor flexibility. Cortex, 2013, 49, 2799-2811.	2.4	47
83	Selective Attentional Enhancement and Inhibition of Fronto-Posterior Connectivity by the Basal Ganglia During Attention Switching. Cerebral Cortex, 2015, 25, 1527-1534.	2.9	47
84	Dopamine and the motivation of cognitive control. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 163, 123-143.	1.8	47
85	GABAergic changes in the thalamocortical circuit in Parkinson's disease. Human Brain Mapping, 2020, 41, 1017-1029.	3.6	46
86	Amplified Striatal Responses to Near-Miss Outcomes in Pathological Gamblers. Neuropsychopharmacology, 2016, 41, 2614-2623.	5.4	45
87	The Neurocognitive Cost of Enhancing Cognition with Methylphenidate: Improved Distractor Resistance but Impaired Updating. Journal of Cognitive Neuroscience, 2017, 29, 652-663.	2.3	45
88	The dopamine transporter haplotype and reward-related striatal responses in adult ADHD. European Neuropsychopharmacology, 2013, 23, 469-478.	0.7	44
89	Dopaminergic Modulation of the Functional Ventrodorsal Architecture of the Human Striatum. Cerebral Cortex, 2017, 27, bhv243.	2.9	42
90	Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males. Psychopharmacology, 2010, 211, 187-195.	3.1	41

#	Article	IF	CITATIONS
91	Opposing Effects of Appetitive and Aversive Cues on Go/No-go Behavior and Motor Excitability. Journal of Cognitive Neuroscience, 2014, 26, 1851-1860.	2.3	41
92	Differential optimal dopamine levels for set-shifting and working memory in Parkinson's disease. Neuropsychologia, 2015, 77, 42-51.	1.6	41
93	Why so curious? Quantifying mechanisms of information seeking. Current Opinion in Behavioral Sciences, 2020, 35, 112-117.	3.9	39
94	A mosaic of cost–benefit control over cortico-striatal circuitry. Trends in Cognitive Sciences, 2021, 25, 710-721.	7.8	39
95	Cognitive flexibility depends on white matter microstructure of the basal ganglia. Neuropsychologia, 2014, 53, 171-177.	1.6	37
96	Ventral striatal hyperconnectivity during rewarded interference control in adolescents with ADHD. Cortex, 2016, 82, 225-236.	2.4	37
97	Contrasting neural effects of aging on proactive and reactive response inhibition. Neurobiology of Aging, 2016, 46, 96-106.	3.1	36
98	Emotionally Aversive Cues Suppress Neural Systems Underlying Optimal Learning in Socially Anxious Individuals. Journal of Neuroscience, 2019, 39, 1445-1456.	3.6	36
99	Realizing the Clinical Potential of Computational Psychiatry: Report From the Banbury Center Meeting, February 2019. Biological Psychiatry, 2020, 88, e5-e10.	1.3	36
100	Mood state moderates the role of serotonin in cognitive biases. Journal of Psychopharmacology, 2010, 24, 573-583.	4.0	35
101	The Social Dominance Paradox. Current Biology, 2014, 24, 2812-2816.	3.9	35
102	Reward modulation of cognitive function in adult attention-deficit/hyperactivity disorder. Behavioural Pharmacology, 2015, 26, 227-240.	1.7	35
103	The cost of dopamine for dynamic cognitive control. Current Opinion in Behavioral Sciences, 2015, 4, 152-159.	3.9	35
104	Human Choice Strategy Varies with Anatomical Projections from Ventromedial Prefrontal Cortex to Medial Striatum. Journal of Neuroscience, 2016, 36, 2857-2867.	3.6	35
105	Frontal network dynamics reflect neurocomputational mechanisms for reducing maladaptive biases in motivated action. PLoS Biology, 2018, 16, e2005979.	5.6	35
106	Aberrant Food Choices after Satiation in Human Orexin-Deficient Narcolepsy Type 1. Sleep, 2016, 39, 1951-1959.	1.1	34
107	Neural connectivity during reward expectation dissociates psychopathic criminals from non-criminal individuals with high impulsive/antisocial psychopathic traits. Social Cognitive and Affective Neuroscience, 2016, 11, 1326-1334.	3.0	34
108	Dopaminergic modulation of distracter-resistance and prefrontal delay period signal. Psychopharmacology, 2015, 232, 1061-1070.	3.1	33

#	Article	IF	CITATIONS
109	Catecholaminergic modulation of the avoidance of cognitive control Journal of Experimental Psychology: General, 2018, 147, 1763-1781.	2.1	33
110	Serotonin and aversive processing in affective and social decision-making. Current Opinion in Behavioral Sciences, 2015, 5, 64-70.	3.9	32
111	Individual differences in bodily freezing predict emotional biases in decision making. Frontiers in Behavioral Neuroscience, 2014, 8, 237.	2.0	30
112	Freezing of gait in Parkinson's disease is related to impaired motor switching during stepping. Movement Disorders, 2015, 30, 1090-1097.	3.9	30
113	Networkâ€level assessment of rewardâ€related activation in patients with <scp>ADHD</scp> and healthy individuals. Human Brain Mapping, 2017, 38, 2359-2369.	3.6	30
114	Abnormal modulation of reward versus punishment learning by a dopamine D2-receptor antagonist in pathological gamblers. Psychopharmacology, 2015, 232, 3345-3353.	3.1	28
115	Anatomical connection strength predicts dopaminergic drug effects on fronto-striatal function. Psychopharmacology, 2013, 227, 521-531.	3.1	27
116	Reward Acts on the pFC to Enhance Distractor Resistance of Working Memory Representations. Journal of Cognitive Neuroscience, 2014, 26, 2812-2826.	2.3	27
117	Effects of dopamine on reinforcement learning in Parkinson's disease depend on motor phenotype. Brain, 2020, 143, 3422-3434.	7.6	26
118	Bromocriptine Does Not Alter Speed–Accuracy Tradeoff. Frontiers in Neuroscience, 2012, 6, 126.	2.8	25
119	Alpha activity reflects individual abilities to adapt to the environment. NeuroImage, 2014, 89, 235-243.	4.2	25
120	Trait Impulsivity Is Associated with the Risk of Falls in Parkinson's Disease. PLoS ONE, 2014, 9, e91190.	2.5	24
121	Methylphenidate alters selective attention by amplifying salience. Psychopharmacology, 2015, 232, 4317-4323.	3.1	24
122	Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band. PLoS ONE, 2015, 10, e0138685.	2.5	24
123	How representative are neuroimaging samples? Large-scale evidence for trait anxiety differences between fMRI and behaviour-only research participants. Social Cognitive and Affective Neuroscience, 2021, 16, 1057-1070.	3.0	24
124	A kinder, gentler dopamine… highlighting dopamine's role in behavioral flexibility. Frontiers in Neuroscience, 2014, 8, 4.	2.8	24
125	Aberrant local striatal functional connectivity in attentionâ€deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2016, 57, 697-705.	5.2	22
126	Striatal dopamine synthesis capacity reflects smartphone social activity. IScience, 2021, 24, 102497.	4.1	22

#	Article	IF	CITATIONS
127	CNTRICS Imaging Biomarkers Final Task Selection: Long-Term Memory and Reinforcement Learning. Schizophrenia Bulletin, 2012, 38, 62-72.	4.3	21
128	Methylphenidate boosts choices of mental labor over leisure depending on striatal dopamine synthesis capacity. Neuropsychopharmacology, 2020, 45, 2170-2179.	5.4	21
129	Acute effects of cocaine and cannabis on reversal learning as a function of COMT and DRD2 genotype. Psychopharmacology, 2016, 233, 199-211.	3.1	20
130	5.4 Dopaminergic Modulation of Flexible Cognitive Control in Humans. , 2009, , 249-260.		20
131	Top-down expectation effects of food labels on motivation. NeuroImage, 2018, 173, 13-24.	4.2	19
132	Curiosity or savouring? Information seeking is modulated by both uncertainty and valence. PLoS ONE, 2021, 16, e0257011.	2.5	18
133	Neuro-Cognitive Effects of Acute Tyrosine Administration on Reactive and Proactive Response Inhibition in Healthy Older Adults. ENeuro, 2018, 5, ENEURO.0035-17.2018.	1.9	18
134	Chemical neuromodulation of cognitive control avoidance. Current Opinion in Behavioral Sciences, 2018, 22, 121-127.	3.9	17
135	Reward learning deficits in Parkinson's disease depend on depression. Psychological Medicine, 2017, 47, 2302-2311.	4.5	16
136	Dopaminergic Drug Effects on Probability Weighting during Risky Decision Making. ENeuro, 2018, 5, ENEURO.0330-18.2018.	1.9	16
137	Opposite effects of cannabis and cocaine on performance monitoring. European Neuropsychopharmacology, 2016, 26, 1127-1139.	0.7	15
138	Controlling striatal function via anterior frontal cortex stimulation. Scientific Reports, 2018, 8, 3312.	3.3	14
139	Enhanced motivation of cognitive control in Parkinson's disease. European Journal of Neuroscience, 2018, 48, 2374-2384.	2.6	14
140	Mechanisms Underlying Dopamine-Induced Risky Choice in Parkinson's Disease With and Without Depression (History). Computational Psychiatry, 2020, 2, 11.	2.0	14
141	Challenging the negative learning bias hypothesis of depression: reversal learning in a naturalistic psychiatric sample. Psychological Medicine, 2022, 52, 303-313.	4.5	14
142	Catecholaminergic modulation of meta-learning. ELife, 2019, 8, .	6.0	14
143	Reduced transfer of affective value to instrumental behavior in violent offenders Journal of Abnormal Psychology, 2016, 125, 657-663.	1.9	13
144	Methylphenidate does not affect convergent and divergent creative processes in healthy adults. NeuroImage, 2020, 205, 116279.	4.2	13

#	Article	IF	CITATIONS
145	Dopaminergic drug effects during reversal learning depend on anatomical connections between the orbitofrontal cortex and the amygdala. Frontiers in Neuroscience, 2013, 7, 142.	2.8	12
146	Enhanced food-related responses in the ventral medial prefrontal cortex in narcolepsy type 1. Scientific Reports, 2018, 8, 16391.	3.3	12
147	The contribution of striatal pseudo-reward prediction errors to value-based decision-making. NeuroImage, 2019, 193, 67-74.	4.2	12
148	Uncertainty increases curiosity, but decreases happiness. Scientific Reports, 2021, 11, 14014.	3.3	12
149	Effects of methylphenidate on reinforcement learning depend on working memory capacity. Psychopharmacology, 2021, 238, 3569-3584.	3.1	12
150	Aversive disinhibition of behavior and striatal signaling in social avoidance. Social Cognitive and Affective Neuroscience, 2014, 9, 1530-1536.	3.0	11
151	Focal striatum lesions impair cautiousness in humans. Cortex, 2016, 85, 37-45.	2.4	11
152	Role of dopamine and clinical heterogeneity in cognitive dysfunction in Parkinson's disease. Progress in Brain Research, 2022, 269, 309-343.	1.4	10
153	Occipital Alpha and Gamma Oscillations Support Complementary Mechanisms for Processing Stimulus Value Associations. Journal of Cognitive Neuroscience, 2018, 30, 119-129.	2.3	9
154	Catecholaminergic modulation of the cost of cognitive control in healthy older adults. PLoS ONE, 2020, 15, e0229294.	2.5	9
155	Effects of average reward rate on vigor as a function of individual variation in striatal dopamine. Psychopharmacology, 2022, 239, 465-478.	3.1	9
156	Neuropsychopharmacology of Cognitive Flexibility. , 2015, , 349-353.		8
157	Greater mindful eating practice is associated with better reversal learning. Scientific Reports, 2018, 8, 5702.	3.3	8
158	Motives underlying human curiosity. Nature Human Behaviour, 2019, 3, 550-551.	12.0	8
159	Stress-sensitive inference of task controllability. Nature Human Behaviour, 2022, 6, 812-822.	12.0	8
160	Protocol of the Healthy Brain Study: An accessible resource for understanding the human brain and how it dynamically and individually operates in its bio-social context. PLoS ONE, 2021, 16, e0260952.	2.5	8
161	Acute serotonin depletion releases motivated inhibition of response vigour. Psychopharmacology, 2015, 232, 1303-1312.	3.1	7
162	Reduced Affective Biasing of Instrumental Action With tDCS Over the Prefrontal Cortex. Brain Stimulation, 2016, 9, 380-387.	1.6	7

#	Article	IF	CITATIONS
163	Disentangling cognitive from motor control: Influence of response modality on updating, inhibiting, and shifting. Acta Psychologica, 2018, 191, 124-130.	1.5	7
164	The cognitive effects of a promised bonus do not depend on dopamine synthesis capacity. Scientific Reports, 2020, 10, 16473.	3.3	4
165	Negative Learning Bias in Depression Revisited: Enhanced Neural Response to Surprising Reward Across Psychiatric Disorders. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 280-289.	1.5	4
166	Paradoxical effects of drugs on cognitive function: the neuropsychopharmacology of the dopamine and other neurotransmitter systems. , 0, , 397-417.		3
167	Catecholaminergic modulation of trust decisions. Psychopharmacology, 2019, 236, 1807-1816.	3.1	3
168	In Reply. Journal of the American Academy of Child and Adolescent Psychiatry, 2015, 54, 686-688.	0.5	2
169	Editorial. Neuropsychologia, 2019, 123, 1-4.	1.6	2
170	The Role of Dopamine in Cognition: Insights from Neuropsychological Studies in Humans and Non-Human Primates. , 2004, , 219-243.		1
171	Dopaminergic Modulation of Flexible Cognitive Control: The Role of the Striatum. , 2007, , 313-334.		1
172	Cognitive deterioration in Parkinson's disease. European Neuropsychopharmacology, 2002, 12, 109-110.	0.7	0
173	Neuro-Cognitive Effects of Acute Tyrosine Administration on Reactive and Proactive Response Inhibition in Healthy Older Adults. SSRN Electronic Journal, 0, , .	0.4	Ο
174	Role of striatal dopamine in the fast adaption of outcome-based decisions. , 2011, , 349-366.		0
175	Catecholaminergic modulation of the cost of cognitive control in healthy older adults. , 2020, 15, e0229294.		Ο
176	Catecholaminergic modulation of the cost of cognitive control in healthy older adults. , 2020, 15, e0229294.		0
177	Catecholaminergic modulation of the cost of cognitive control in healthy older adults. , 2020, 15, e0229294.		0
178	Catecholaminergic modulation of the cost of cognitive control in healthy older adults. , 2020, 15, e0229294.		0