
Sergio Montserrat-de la Paz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/191374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hemp (Cannabis sativa L.) Seed Oil: Analytical and Phytochemical Characterization of the Unsaponifiable Fraction. Journal of Agricultural and Food Chemistry, 2014, 62, 1105-1110.	5.2	147
2	Membrane composition and dynamics: A target of bioactive virgin olive oil constituents. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1638-1656.	2.6	110
3	Squalene targets pro- and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages. Journal of Functional Foods, 2015, 14, 779-790.	3.4	73
4	Grape (Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods, 2020, 9, 1360.	4.3	67
5	Bifidobacterium pseudocatenulatum CECT 7765 Ameliorates Neuroendocrine Alterations Associated with an Exaggerated Stress Response and Anhedonia in Obese Mice. Molecular Neurobiology, 2018, 55, 5337-5352.	4.0	61
6	The sterols isolated from Evening Primrose oil modulate the release of proinflammatory mediators. Phytomedicine, 2012, 19, 1072-1076.	5.3	59
7	Nutraceutical value of kiwicha (Amaranthus caudatus L.). Journal of Functional Foods, 2020, 65, 103735.	3.4	52
8	Phytochemical characterization of potential nutraceutical ingredients from Evening Primrose oil (Oenothera biennis L.). Phytochemistry Letters, 2014, 8, 158-162.	1.2	46
9	Long-chain fatty alcohols from evening primrose oil inhibit the inflammatory response in murine peritoneal macrophages. Journal of Ethnopharmacology, 2014, 151, 131-136.	4.1	46
10	Niacin and its metabolites as master regulators of macrophage activation. Journal of Nutritional Biochemistry, 2017, 39, 40-47.	4.2	43
11	Neuroprotective protein hydrolysates from hemp (<i>Cannabis sativa</i> L.) seeds. Food and Function, 2019, 10, 6732-6739.	4.6	43
12	Hemp (Cannabis sativa L.) Protein Hydrolysates Promote Anti-Inflammatory Response in Primary Human Monocytes. Biomolecules, 2020, 10, 803.	4.0	38
13	Tyrosol and its metabolites as antioxidative and anti-inflammatory molecules in human endothelial cells. Food and Function, 2017, 8, 2905-2914.	4.6	37
14	Bacteroides uniformis CECT 7771 alleviates inflammation within the gut-adipose tissue axis involving TLR5 signaling in obese mice. Scientific Reports, 2021, 11, 11788.	3.3	33
15	Leukocyte Overexpression of Intracellular NAMPT Attenuates Atherosclerosis by Regulating PPARÎ ³ -Dependent Monocyte Differentiation and Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1157-1167.	2.4	31
16	Ginger rhizome enhances the anti-inflammatory and anti-nociceptive effects of paracetamol in an experimental mouse model of fibromyalgia. Inflammopharmacology, 2018, 26, 1093-1101.	3.9	29
17	Pharmacological effects of mitraphylline from Uncaria tomentosa in primary human monocytes: Skew toward M2 macrophages. Journal of Ethnopharmacology, 2015, 170, 128-135.	4.1	28
18	Virgin olive oil and its phenol fraction modulate monocyte/macrophage functionality: a potential therapeutic strategy in the treatment of systemic lupus erythematosus. British Journal of Nutrition, 2018, 120, 681-692.	2.3	27

#	Article	IF	CITATIONS
19	Olive oil and postprandial hyperlipidemia: implications for atherosclerosis and metabolic syndrome. Food and Function, 2016, 7, 4734-4744.	4.6	26
20	High-density lipoproteins and immune response: A review. International Journal of Biological Macromolecules, 2022, 195, 117-123.	7.5	26
21	Acute effects of dietary fatty acids on osteclastogenesis via RANKL/RANK/OPG system. Molecular Nutrition and Food Research, 2016, 60, 2505-2513.	3.3	23
22	Postprandial dietary fatty acids exert divergent inflammatory responses in retinal-pigmented epithelium cells. Food and Function, 2016, 7, 1345-1353.	4.6	22
23	Unsaponifiable fraction isolated from grape (Vitis vinifera L.) seed oil attenuates oxidative and inflammatory responses in human primary monocytes. Food and Function, 2018, 9, 2517-2523.	4.6	22
24	Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. Journal of Nutritional Biochemistry, 2021, 89, 108561.	4.2	22
25	GPETAFLR, a novel bioactive peptide from Lupinus angustifolius L. protein hydrolysate, reduces osteoclastogenesis. Journal of Functional Foods, 2018, 47, 299-303.	3.4	21
26	Characterization of bioactive compounds in defatted hempseed (<i>Cannabis sativa</i> L.) by UHPLC-HRMS/MS and anti-inflammatory activity in primary human monocytes. Food and Function, 2020, 11, 4057-4066.	4.6	21
27	The sterols isolated from evening primrose oil inhibit human colon adenocarcinoma cell proliferation and induce cell cycle arrest through upregulation of LXR. Journal of Functional Foods, 2015, 12, 64-69.	3.4	20
28	Virgin Olive Oil and Hypertension. Current Vascular Pharmacology, 2016, 14, 323-329.	1.7	20
29	Effect of metabolites of hydroxytyrosol on protection against oxidative stress and inflammation in human endothelial cells. Journal of Functional Foods, 2017, 29, 238-247.	3.4	20
30	Postprandial triglyceride-rich lipoproteins promote M1/M2 microglia polarization in a fatty-acid-dependent manner. Journal of Nutritional Biochemistry, 2020, 75, 108248.	4.2	20
31	High-Density Lipoproteins and Mediterranean Diet: A Systematic Review. Nutrients, 2021, 13, 955.	4.1	20
32	A microRNA expression signature of the postprandial state in response to a high-saturated-fat challenge. Journal of Nutritional Biochemistry, 2018, 57, 45-55.	4.2	18
33	Evaluation of Anti-Inflammatory and Atheroprotective Properties of Wheat Gluten Protein Hydrolysates in Primary Human Monocytes. Foods, 2020, 9, 854.	4.3	18
34	Antioxidant and Anti-Inflammatory Properties of Bioavailable Protein Hydrolysates from Lupin-Derived Agri-Waste. Biomolecules, 2021, 11, 1458.	4.0	18
35	The effects of exogenous fatty acids and niacin on human monocyteâ€macrophage plasticity. Molecular Nutrition and Food Research, 2017, 61, 1600824.	3.3	17
36	GPETAFLR, an octapeptide isolated from Lupinus angustifolius L. protein hydrolysate, promotes the skewing to the M2 phenotype in human primary monocytes. Food and Function, 2019, 10, 3303-3311.	4.6	17

#	Article	IF	CITATIONS
37	A lupine (<i>Lupinus angustifolious</i> L.) peptide prevents non-alcoholic fatty liver disease in high-fat-diet-induced obese mice. Food and Function, 2020, 11, 2943-2952.	4.6	17
38	Monounsaturated Fatty Acids in a Highâ€Fat Diet and Niacin Protect from White Fat Dysfunction in the Metabolic Syndrome. Molecular Nutrition and Food Research, 2019, 63, e1900425.	3.3	16
39	Validation and additional support for an experimental animal model of fibromyalgia. Modern Rheumatology, 2015, 25, 116-122.	1.8	15
40	Resveratrol-enriched grape seed oil (Vitis vinifera L.) protects from white fat dysfunction in obese mice. Journal of Functional Foods, 2019, 62, 103546.	3.4	15
41	Antihypertensive and Antioxidant Activity of Chia Protein Techno-Functional Extensive Hydrolysates. Foods, 2021, 10, 2297.	4.3	15
42	Niacin and olive oil promote skewing to the M2 phenotype in bone marrow-derived macrophages of mice with metabolic syndrome. Food and Function, 2016, 7, 2233-2238.	4.6	14
43	Minor compounds from virgin olive oil attenuate LPSâ€induced inflammation via visfatinâ€related gene modulation on primary human monocytes. Journal of Food Biochemistry, 2019, 43, e12941.	2.9	13
44	Pharmacological Effects of Niacin on Acute Hyperlipemia. Current Medicinal Chemistry, 2016, 23, 2826-2835.	2.4	12
45	Antioxidant and Immunomodulatory Properties of Chia Protein Hydrolysates in Primary Human Monocyte–Macrophage Plasticity. Foods, 2022, 11, 623.	4.3	12
46	Validation of ethnopharmacological use as anti-inflammatory of a decoction from <i>Annona muricata</i> leaves. Tropical Journal of Obstetrics and Gynaecology, 2015, 12, 14.	0.3	11
47	Mitraphylline inhibits lipopolysaccharide-mediated activation of primary human neutrophils. Phytomedicine, 2016, 23, 141-148.	5.3	11
48	GPETAFLR, a peptide from Lupinus <i>angustifolius</i> L. prevents inflammation in microglial cells and confers neuroprotection in brain. Nutritional Neuroscience, 2022, 25, 472-484.	3.1	11
49	Dietary supplementation evening primrose oil improve symptoms of fibromyalgia syndrome. Journal of Functional Foods, 2013, 5, 1279-1287.	3.4	10
50	GPETAFLR, a biopeptide from Lupinus angustifolius L., protects against oxidative and inflammatory damage in retinal pigment epithelium cells. Journal of Food Biochemistry, 2019, 43, e12995.	2.9	10
51	Exogenous fatty acids and niacin on acute prostaglandin D 2 production in human myeloid cells. Journal of Nutritional Biochemistry, 2017, 39, 22-31.	4.2	9
52	Dietary Fatty Acids in Postprandial Triglyceride-Rich Lipoproteins Modulate Human Monocyte-Derived Dendritic Cell Maturation and Activation. Nutrients, 2020, 12, 3139.	4.1	9
53	Olive oil, compared to a saturated dietary fat, has a protective role on atherosclerosis in niacin-treated mice with metabolic syndrome. Journal of Functional Foods, 2016, 26, 557-564.	3.4	8
54	Dietary fatty acids on aortic root calcification in mice with metabolic syndrome. Food and Function, 2017, 8, 1468-1474.	4.6	8

#	Article	IF	CITATIONS
55	Postprandial triglyceride-rich lipoproteins promote lipid accumulation and apolipoprotein B-48 receptor transcriptional activity in human circulating and murine bone marrow neutrophils in a fatty acid-dependent manner. Molecular Nutrition and Food Research, 2017, 61, 1600879.	3.3	8
56	Identification and Characterization of Novel Antioxidant Protein Hydrolysates from Kiwicha (Amaranthus caudatus L.). Antioxidants, 2021, 10, 645.	5.1	8
57	Pectins and Olive Pectins: From Biotechnology to Human Health. Biology, 2021, 10, 860.	2.8	8
58	Effects of immediateâ€release niacin and dietary fatty acids on acute insulin and lipid status in individuals with metabolic syndrome. Journal of the Science of Food and Agriculture, 2018, 98, 2194-2200.	3.5	7
59	Oleuropein and its peracetylated derivative negatively regulate osteoclastogenesis by controlling the expression of genes involved in osteoclast differentiation and function. Food and Function, 2020, 11, 4038-4048.	4.6	6
60	Unsaponifiable and phenolic fractions from virgin olive oil prevent neuroinflammation skewing microglia polarization toward M2 phenotype. Journal of Functional Foods, 2019, 62, 103543.	3.4	5
61	Obesity-Associated Metabolic Disturbances Reverse the Antioxidant and Anti-Inflammatory Properties of High-Density Lipoproteins in Microglial Cells. Biomedicines, 2021, 9, 1722.	3.2	5
62	Nutraceutical Extract from Dulse (Palmaria palmata L.) Inhibits Primary Human Neutrophil Activation. Marine Drugs, 2019, 17, 610.	4.6	3
63	Niacin and hyperlipidemia. , 2020, , 263-281.		3
64	Diets supplemented with Annona muricata improve the symptoms of fibromyalgia. PharmaNutrition, 2018, 6, 81-84.	1.7	2
65	Oleic acid—the main component of olive oil on postprandial metabolic processes. , 2021, , 639-649.		2
66	Dietary fatty acids and lipoproteins on progression of age-related macular degeneration. Grasas Y Aceites, 2017, 68, 187.	0.9	2
67	Active Ingredients from Foods: Biochemical and Processing Aspects. Foods, 2021, 10, 1240.	4.3	1
68	Fatty Acids on Osteoclastogenesis. , 2017, , .		0
69	Postprandial dietary fatty acids regulate microglia M1/M2 polarization. Implications in neuroinflammation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-4-21.	0.0	0