Ira Skvortsova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1913436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics, 2021, 11, 7844-7868.	10.0	70
2	KLF4, Slug and EMT in Head and Neck Squamous Cell Carcinoma. Cells, 2021, 10, 539.	4.1	14
3	Simvastatin is effective in killing the radioresistant breast carcinoma cells. Radiology and Oncology, 2021, 55, 305-316.	1.7	5
4	Cancer Stem Cells: What Do We Know about Them?. Cells, 2021, 10, 1528.	4.1	5
5	ETV7 regulates breast cancer stem-like cell features by repressing IFN-response genes. Cell Death and Disease, 2021, 12, 742.	6.3	16
6	Cancer stem cells and their unique role in metastatic spread. Seminars in Cancer Biology, 2020, 60, 148-156.	9.6	68
7	Special Issue "Enigmatic tumor properties associated with metastatic spread―seminars in cancer biology, volume XX. Seminars in Cancer Biology, 2020, 60, iii-iv.	9.6	1
8	Slug Is A Surrogate Marker of Epithelial to Mesenchymal Transition (EMT) in Head and Neck Cancer. Journal of Clinical Medicine, 2020, 9, 2061.	2.4	23
9	Molecular heterogeneity in breast carcinoma cells with increased invasive capacities. Radiology and Oncology, 2020, 54, 103-118.	1.7	10
10	Targeting Cancer Stem Cells Pathways for the Effective Treatment of Cancer. Current Drug Targets, 2020, 21, 258-278.	2.1	18
11	The Role of Cancer Stem Cells in Radiation Resistance. Frontiers in Oncology, 2020, 10, 164.	2.8	137
12	Pleiotropic Effects of Epithelial Mesenchymal Crosstalk on Head and Neck Cancer: EMT and beyond. Cancer Microenvironment, 2019, 12, 67-76.	3.1	9
13	The CD98 Heavy Chain Is a Marker and Regulator of Head and Neck Squamous Cell Carcinoma Radiosensitivity. Clinical Cancer Research, 2019, 25, 3152-3163.	7.0	53
14	Therapy resistance mediated by exosomes. Molecular Cancer, 2019, 18, 58.	19.2	133
15	Olaparib is effective in combination with, and as maintenance therapy after, firstâ€line endocrine therapy in prostate cancer cells. Molecular Oncology, 2018, 12, 561-576.	4.6	21
16	Therapy resistance mediated by cancer stem cells. Seminars in Cancer Biology, 2018, 53, 156-167.	9.6	212
17	Special Issue "Cancer Stem Cells: Impact on Treatment― Seminars in Cancer Biology, 2018, 53, iii-iv.	9.6	1
18	Concise Review: Prostate Cancer Stem Cells: Current Understanding. Stem Cells, 2018, 36, 1457-1474.	3.2	90

IRA SKVORTSOVA

#	Article	IF	CITATIONS
19	Fractionated Radiation of Primary Prostate Basal Cells Results in Downplay of Interferon Stem Cell and Cell Cycle Checkpoint Signatures. European Urology, 2018, 74, 847-849.	1.9	4
20	Predicting and Understanding Cancer Response to Treatment. Disease Markers, 2018, 2018, 1-2.	1.3	2
21	In the beginning, there was chaos: A perspective on the development of immuno-oncological biomarkers. Seminars in Cancer Biology, 2018, 52, v-vi.	9.6	1
22	Editorial: Recent Trends in Anticancer Drug Development: Challenges and Opportunities. Current Medicinal Chemistry, 2018, 24, 4727-4728.	2.4	3
23	Promising Targets in Anti-cancer Drug Development: Recent Updates. Current Medicinal Chemistry, 2018, 24, 4729-4752.	2.4	56
24	Screening and identification of molecular targets for cancer therapy. Cancer Letters, 2017, 387, 3-9.	7.2	16
25	The role of exosomes in cancer metastasis. Seminars in Cancer Biology, 2017, 44, 170-181.	9.6	305
26	Mechanisms of Tubulin Binding Ligands to Target Cancer Cells: Updates on their Therapeutic Potential and Clinical Trials. Current Cancer Drug Targets, 2017, 17, 357-375.	1.6	53
27	Editorial. Seminars in Cancer Biology, 2015, 35, 1-2.	9.6	7
28	Proteomic approach to understand metastatic spread. Proteomics - Clinical Applications, 2015, 9, 1069-1077.	1.6	6
29	Editorial. Seminars in Cancer Biology, 2015, 31, 1-2.	9.6	3
30	Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Seminars in Cancer Biology, 2015, 35, 39-44.	9.6	131
31	Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways. Seminars in Cancer Biology, 2015, 31, 36-42.	9.6	80
32	Putative biomarkers and therapeutic targets associated with radiation resistance. Expert Review of Proteomics, 2014, 11, 207-214.	3.0	13
33	Proteomics of cancer stem cells. International Journal of Radiation Biology, 2014, 90, 653-658.	1.8	21
34	Rac1 as a multifunctional therapeutic target to prevent and combat cancer metastasis. Oncoscience, 2014, 1, 513-521.	2.2	21
35	Profilin 1: Do we have a novel proteome-found biomarker predicting response to anticancer therapy?. Proteomics, 2013, 13, 2069-2071.	2.2	6
36	Editorial (Hot Topic: Cancer Proteomics). Current Proteomics, 2013, 10, 75-75.	0.3	0

IRA SKVORTSOVA

#	Article	IF	CITATIONS
37	EDITORIAL (Hot Topic: "Signal Transduction and Response to Anti-Cancer Therapyâ€). Current Signal Transduction Therapy, 2012, 7, 185-186.	0.5	0
38	Radioresistant head and neck squamous cell carcinoma cells: Intracellular signaling, putative biomarkers for tumor recurrences and possible therapeutic targets. Radiotherapy and Oncology, 2011, 101, 177-182.	0.6	55
39	Feasibility and Toxicity of Concomitant Radio/Immunotherapy with MabThera (Rituximab®) for Patients with Non-Hodkin's Lymphoma. Strahlentherapie Und Onkologie, 2011, 187, 300-305.	2.0	6
40	Epithelial-to-mesenchymal transition and c-myc expression are the determinants of cetuximab-induced enhancement of squamous cell carcinoma radioresponse. Radiotherapy and Oncology, 2010, 96, 108-115.	0.6	61
41	Proteomic identification of aldo-keto reductase AKR1B10 induction after treatment of colorectal cancer cells with the proteasome inhibitor bortezomib. Molecular Cancer Therapeutics, 2009, 8, 1995-2006.	4.1	30
42	Oxidative damage and cutaneous reactions during radiotherapy in combination with cetuximab. Radiotherapy and Oncology, 2009, 90, 281-282.	0.6	7
43	Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics, 2008, 8, 4521-4533.	2.2	114
44	Cetuximab inhibits thymidylate synthase in colorectal cells expressing epidermal growth factor receptor. Proteomics - Clinical Applications, 2008, 2, 908-914.	1.6	20
45	Antitumor activity of CTFB, a novel anticancer agent, is associated with the down-regulation of nuclear factor-I®B expression and proteasome activation in head and neck squamous carcinoma cell lines. Molecular Cancer Therapeutics, 2007, 6, 1898-1908.	4.1	11
46	MPC-6827: A Small-Molecule Inhibitor of Microtubule Formation That Is Not a Substrate for Multidrug Resistance Pumps. Cancer Research, 2007, 67, 5865-5871.	0.9	102
47	Rituximab Enhances Radiation-Triggered Apoptosis in Non-Hodgkin's Lymphoma Cells Via Caspase-dependent and - Independent Mechanisms. Journal of Radiation Research, 2006, 47, 183-196.	1.6	50
48	Pretreatment with Rituximab Enhances Radiosensitivity of Non-Hodgkin's Lymphoma Cells. Journal of Radiation Research, 2005, 46, 241-248.	1.6	54
49	Gefitinib-responsive EGFR-positive colorectal cancers have different proteome profiles from non-responsive cell lines. European Journal of Cancer, 2005, 41, 2338-2346.	2.8	30
50	Effects of Paclitaxel and Docetaxel on EGFR-Expressing Human Carcinoma Cells Under Normoxic Versus Hypoxic Conditions <i>In Vitro</i> . Journal of Chemotherapy, 2004, 16, 372-380.	1.5	17
51	Different proteome pattern of epidermal growth factor receptor-positive colorectal cancer cell lines that are responsive and nonresponsive to C225 antibody treatment. Molecular Cancer Therapeutics, 2004, 3, 1551-8.	4.1	20