Shaa Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1913350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Degradation of 5-Dialkylamino-Substituted Chlorsulfuron Derivatives in Alkaline Soil. Molecules, 2022, 27, 1486.	3.8	5
2	Synthesis, Herbicidal Activity, Crop Safety and Soil Degradation of Pyrimidine- and Triazine-Substituted Chlorsulfuron Derivatives. Molecules, 2022, 27, 2362.	3.8	2
3	Alkaline Soil Degradation and Crop Safety of 5-Substituted Chlorsulfuron Derivatives. Molecules, 2022, 27, 3318.	3.8	Ο
4	Synthesis and Insecticidal Evaluation of Novel Anthranilic Diamides Derivatives Containing 4â€Chlorine Substituted N â€Pyridylpyrazole. Chinese Journal of Chemistry, 2021, 39, 75-80.	4.9	7
5	Crossâ€resistance, fitness costs, and biochemical mechanism of laboratoryâ€selected resistance to tenvermectin <scp>A</scp> in <i>Plutella xylostella</i> . Pest Management Science, 2021, 77, 2826-2835.	3.4	4
6	Synthesis and Insecticidal Activities of Novel Optically Active Dicarboxamides Containing N-Trifluoroacetyl Sulfulimiyl Substituents. Chinese Journal of Organic Chemistry, 2021, 41, 3532.	1.3	0
7	Targeted Synthesis of Anthranilic Diamides Insecticides Containing Trifluoroethoxyl Phenylpyrazole. Chemical Research in Chinese Universities, 2021, 37, 655-661.	2.6	3
8	Synthesis, biological activities, and SAR studies of novel 1-(2-chloro-4,5-difluorophenyl)-1H-pyrazole derivatives. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127535.	2.2	11
9	Design, Synthesis, Biological Evaluation and SARs of Anthranilic Diamide Derivatives Containing Pyrrole Moieties. Chemical Research in Chinese Universities, 2020, 36, 1168-1173.	2.6	2
10	Synthesis, Insecticidal Activities, and Structure–Activity Relationship of Phenylpyrazole Derivatives Containing a Fluoro-Substituted Benzene Moiety. Journal of Agricultural and Food Chemistry, 2020, 68, 11282-11289.	5.2	24
11	Research on the controllable degradation of N-methylamido and dialkylamino substituted at the 5th position of the benzene ring in chlorsulfuron in acidic soil. RSC Advances, 2020, 10, 17870-17880.	3.6	6
12	Controllable Soil Degradation Rate of 5-Substituted Sulfonylurea Herbicides as Novel AHAS Inhibitors. Journal of Agricultural and Food Chemistry, 2020, 68, 3017-3025.	5.2	12
13	Design, synthesis, antitumor activity and theoretical calculation of novel PI3Ka inhibitors. Bioorganic Chemistry, 2020, 98, 103737.	4.1	13
14	Research on controllable alkaline soil degradation of 5-substituted chlorsulfuron. Chinese Chemical Letters, 2018, 29, 945-948.	9.0	7
15	Aluminum(III) Chloride Promoted Oxygen Transfer: Selective Oxidation of Sulfides to Sulfoxides. Synlett, 2018, 29, 340-343.	1.8	5
16	Design, Synthesis, Biological Evaluation and SARs of Novel <i>N</i> ‣ubstituted Sulfoximines as Potential Ryanodine Receptor Modulators. Chinese Journal of Chemistry, 2018, 36, 129-133.	4.9	13
17	Design, synthesis, biological activities and DFT calculation of novel 1,2,4-triazole Schiff base derivatives. Bioorganic Chemistry, 2018, 80, 253-260.	4.1	55
18	The exploration of chiral N -cyano sulfiliminyl dicarboxamides on insecticidal activities. Chinese Chemical Letters, 2017, 28, 1499-1504.	9.0	4

Shaa Zhou

#	Article	IF	CITATIONS
19	Sulfimineâ€Promoted Fast O Transfer: One–step Synthesis of Sulfoximine from Sulfide. ChemistrySelect, 2017, 2, 1620-1624.	1.5	64
20	Design, synthesis and herbicidal activity study of aryl 2,6-disubstituted sulfonylureas as potent acetohydroxyacid synthase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3365-3369.	2.2	13
21	Synthesis, insecticidal activities and structure–activity relationship study of dual chiral sulfilimines. Molecular Diversity, 2017, 21, 915-923.	3.9	3
22	Research on Controllable Degradation of Novel Sulfonylurea Herbicides in Acidic and Alkaline Soils. Journal of Agricultural and Food Chemistry, 2017, 65, 7661-7668.	5.2	10
23	Design, synthesis and insecticidal evaluation of novel N-pyridylpyrazolecarboxamide derivatives containing isoxazole, isoxazoline and 1,3,4-thiadiazole rings. Chemical Research in Chinese Universities, 2017, 33, 882-889.	2.6	6
24	Design, synthesis and herbicidal activity of novel sulfonylureas containing tetrahydrophthalimide substructure. Chemical Research in Chinese Universities, 2016, 32, 396-401.	2.6	2
25	Design, Synthesis and Insecticidal Evaluation of Anthranilic Diamides Containing Optically Pure Amino Acid Moiety. Chinese Journal of Chemistry, 2016, 34, 1218-1224.	4.9	5
26	Synthesis and antifungal activities of novel strobilurin derivatives containing quinolin-2(1H)-one moiety. Chemical Research in Chinese Universities, 2016, 32, 600-606.	2.6	7
27	Design, synthesis and herbicidal activity of novel sulfonylureas containing triazole and oxadiazole moieties. Chemical Research in Chinese Universities, 2016, 32, 607-614.	2.6	8
28	Design, synthesis and fungicidal activity of novel strobilurin-1,2,4-triazole derivatives containing furan or thiophene rings. Chemical Research in Chinese Universities, 2016, 32, 952-958.	2.6	6
29	Controllable Effect of Structural Modification of Sulfonylurea Herbicides on Soil Degradation. Chinese Journal of Chemistry, 2016, 34, 1135-1142.	4.9	11
30	Synthesis, Crystal Structure, and Biological Activity of Novel Anthranilic Diamide Insecticide Containing Propargyl Ether Group. Journal of Heterocyclic Chemistry, 2016, 53, 1036-1045.	2.6	12
31	Research on controllable degradation of sulfonylurea herbicides. RSC Advances, 2016, 6, 23038-23047.	3.6	12
32	Synthesis of Osthole Derivatives with Grignard Reagents and Their Larvicidal Activities on Mosquitoes. Chinese Journal of Chemistry, 2015, 33, 1353-1358.	4.9	14
33	Design, Synthesis, Structureâ€Activity Relationship and Insecticidal Activities of Trifluoromethylâ€Containing Sulfiliminyl and Sulfoximinyl Phthalic Acid Diamide Structure. Chinese Journal of Chemistry, 2014, 32, 567-572.	4.9	13
34	Novel phthalamides containing sulfiliminyl moieties and derivatives as potential ryanodine receptor modulators. Organic and Biomolecular Chemistry, 2014, 12, 6643.	2.8	24
35	Chiral Dicarboxamide Scaffolds Containing a Sulfiliminyl Moiety as Potential Ryanodine Receptor Activators. Journal of Agricultural and Food Chemistry, 2014, 62, 6269-6277.	5.2	30