Anke J Roelofs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1913230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Mechanisms of Action of Bisphosphonates: Current Status. Clinical Cancer Research, 2006, 12, 6222s-6230s.	3.2	469
2	Peripheral blood monocytes are responsible for γδT cell activation induced by zoledronic acid through accumulation of IPP/DMAPP. British Journal of Haematology, 2009, 144, 245-250.	1.2	260
3	Fluorescent risedronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. Journal of Bone and Mineral Research, 2010, 25, 606-616.	3.1	156
4	Joint morphogenetic cells in the adult mammalian synovium. Nature Communications, 2017, 8, 15040.	5.8	147
5	Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Current Opinion in Pharmacology, 2018, 40, 74-80.	1.7	129
6	Yes-associated protein (YAP) is a negative regulator of chondrogenesis in mesenchymal stem cells. Arthritis Research and Therapy, 2015, 17, 147.	1.6	104
7	Influence of bone affinity on the skeletal distribution of fluorescently labeled bisphosphonates in vivo. Journal of Bone and Mineral Research, 2012, 27, 835-847.	3.1	92
8	Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Annals of the Rheumatic Diseases, 2020, 79, 1625-1634.	0.5	48
9	Fluorescent Bisphosphonate and Carboxyphosphonate Probes: AÂVersatile Imaging Toolkit for Applications in Bone Biology and Biomedicine. Bioconjugate Chemistry, 2016, 27, 329-340.	1.8	47
10	The burden of metabolic syndrome on osteoarthritic joints. Arthritis Research and Therapy, 2019, 21, 289.	1.6	44
11	Regulation of Gdf5 expression in joint remodelling, repair and osteoarthritis. Scientific Reports, 2020, 10, 157.	1.6	44
12	Adipose specific disruption of seipin causes early-onset generalised lipodystrophy and altered fuel utilisation without severe metabolic disease. Molecular Metabolism, 2018, 10, 55-65.	3.0	36
13	Agrin induces long-term osteochondral regeneration by supporting repair morphogenesis. Science Translational Medicine, 2020, 12, .	5.8	30
14	Targeting the IL-6–Yap–Snail signalling axis in synovial fibroblasts ameliorates inflammatory arthritis. Annals of the Rheumatic Diseases, 2022, 81, 214-224.	0.5	26
15	Bone marrow contribution to synovial hyperplasia following joint surface injury. Arthritis Research and Therapy, 2016, 18, 166.	1.6	24
16	Immunostaining of Skeletal Tissues. Methods in Molecular Biology, 2019, 1914, 437-450.	0.4	16
17	Human Mesenchymal Stromal Cells Enhance Cartilage Healing in a Murine Joint Surface Injury Model. Cells, 2021, 10, 1999.	1.8	6
18	I058 Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Rheumatology, 2019, 58, .	0.9	0