Emily Hitz

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1912478/emily-hitz-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39	5,947	34	39
papers	citations	h-index	g-index
39	7,261 ext. citations	17.4	5.82
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
39	Reversible Short-Circuit Behaviors in Garnet-Based Solid-State Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2000702	21.8	31
38	Strong and Superhydrophobic Wood with Aligned Cellulose Nanofibers as a Waterproof Structural Material [I] Chinese Journal of Chemistry, 2020, 38, 823-829	4.9	9
37	High-Performance, Scalable Wood-Based Filtration Device with a Reversed-Tree Design. <i>Chemistry of Materials</i> , 2020 , 32, 1887-1895	9.6	29
36	An Energy-Efficient, Wood-Derived Structural Material Enabled by Pore Structure Engineering towards Building Efficiency. <i>Small Methods</i> , 2020 , 4, 1900747	12.8	28
35	Scalable aesthetic transparent wood for energy efficient buildings. <i>Nature Communications</i> , 2020 , 11, 3836	17.4	71
34	Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. <i>Energy and Environmental Science</i> , 2019 , 12, 1558-1567	35.4	269
33	A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Science Advances, 2019, 5, ea	au4238	3 81
32	Transparent, Anisotropic Biofilm with Aligned Bacterial Cellulose Nanofibers. <i>Advanced Functional Materials</i> , 2018 , 28, 1707491	15.6	96
31	Scalable and Highly Efficient Mesoporous Wood-Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport. <i>Advanced Functional Materials</i> , 2018 , 28, 1707134	15.6	254
30	Flexible, Scalable, and Highly Conductive Garnet-Polymer Solid Electrolyte Templated by Bacterial Cellulose. <i>Advanced Energy Materials</i> , 2018 , 8, 1703474	21.8	117
29	Plasmonic Wood for High-Efficiency Solar Steam Generation. <i>Advanced Energy Materials</i> , 2018 , 8, 17010	028 1.8	472
28	Isotropic Paper Directly from Anisotropic Wood: Top-Down Green Transparent Substrate Toward Biodegradable Electronics. <i>ACS Applied Materials & Electronics</i> , 2018 , 10, 28566-28571	9.5	49
27	High-Temperature Atomic Mixing toward Well-Dispersed Bimetallic Electrocatalysts. <i>Advanced Energy Materials</i> , 2018 , 8, 1800466	21.8	24
26	From Wood to Textiles: Top-Down Assembly of Aligned Cellulose Nanofibers. <i>Advanced Materials</i> , 2018 , 30, e1801347	24	75
25	Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 1104-1112	9.5	227
24	Wood-Based Nanotechnologies toward Sustainability. Advanced Materials, 2018, 30, 1703453	24	229
23	High-Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design. <i>Advanced Energy Materials</i> , 2018 , 8, 1701616	21.8	174

(2016-2018)

22	Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors. <i>ACS Nano</i> , 2018 , 12, 5266-5273	16.7	36
21	A carbon-based 3D current collector with surface protection for Li metal anode. <i>Nano Research</i> , 2017 , 10, 1356-1365	10	139
20	Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. <i>Nano Research</i> , 2017 , 10, 4256-4265	10	61
19	Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. <i>Nano Letters</i> , 2017 , 17, 3792-3797	11.5	191
18	3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination. <i>Advanced Materials</i> , 2017 , 29, 1700981	24	387
17	Solution Processed Boron Nitride Nanosheets: Synthesis, Assemblies and Emerging Applications. <i>Advanced Functional Materials</i> , 2017 , 27, 1701450	15.6	109
16	Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 2017, 29, 1701756	24	424
15	Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. <i>Nano Letters</i> , 2017 , 17, 565-571	11.5	416
14	Highly Anisotropic Conductors. Advanced Materials, 2017, 29, 1703331	24	57
13	Super-Strong, Super-Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers. <i>Advanced Materials</i> , 2017 , 29, 1702498	24	127
12	Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. <i>Advanced Materials</i> , 2017 , 29, 17011	694	452
11	Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode. <i>Advanced Materials</i> , 2017 , 29, 1702714	24	374
10	Superflexible Wood. ACS Applied Materials & Therfaces, 2017, 9, 23520-23527	9.5	88
9	High temperature thermal management with boron nitride nanosheets. <i>Nanoscale</i> , 2017 , 10, 167-173	7.7	35
8	A Solution-Processed High-Temperature, Flexible, Thin-Film Actuator. <i>Advanced Materials</i> , 2016 , 28, 86	1 <u>8</u> -β62	4 ₄₂
7	Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 2204-10	9.5	124
6	Ultra-Thick, Low-Tortuosity, and Mesoporous Wood Carbon Anode for High-Performance Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1600377	21.8	205
5	All-Component Transient Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1502496	21.8	37

		EMILY HITZ
4	Light management in plasticpaper hybrid substrate towards high-performance optoelectronics. Energy and Environmental Science, 2016, 9, 2278-2285	35.4 85
3	Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors. <i>Nano Letters</i> , 2016 , 16, 3616-23	11.5 146
2	Three-Dimensional Printable High-Temperature and High-Rate Heaters. ACS Nano, 2016, 10, 5272-9	16.7 137
1	Electrochemical Intercalation of Lithium Ions into NbSe2 Nanosheets. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 11390-5	9.5 40