Peter Mattjus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1912457/publications.pdf

Version: 2024-02-01

58	2,497	27 h-index	49
papers	citations		g-index
61	61	61	2034
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Special issue entitled Lipid transporters edited by Shamshad Cockcroft and Padinjat Raghu. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159152.	2.4	О
2	LAPTM4B controls the sphingolipid and ether lipid signature of small extracellular vesicles. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158855.	2.4	8
3	Who moves the sphinx? An overview of intracellular sphingolipid transport. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 159021.	2.4	2
4	Ether lipid and sphingolipid expression patterns are estrogen receptor-dependently altered in breast cancer cells. International Journal of Biochemistry and Cell Biology, 2020, 127, 105834.	2.8	11
5	Indirect Lipid Transfer Protein Activity Measurements Using Quantification of Glycosphingolipid Production. Methods in Molecular Biology, 2019, 1949, 105-114.	0.9	4
6	UDP-glucose ceramide glucosyltransferase activates AKT, promoted proliferation, and doxorubicin resistance in breast cancer cells. Cellular and Molecular Life Sciences, 2018, 75, 3393-3410.	5.4	40
7	Nach Is a Novel Subgroup at an Early Evolutionary Stage of the CNC-bZIP Subfamily Transcription Factors from the Marine Bacteria to Humans. International Journal of Molecular Sciences, 2018, 19, 2927.	4.1	14
8	Glucosylceramide acyl chain length is sensed by the glycolipid transfer protein. PLoS ONE, 2018, 13, e0209230.	2.5	12
9	Topovectorial mechanisms control the juxtamembrane proteolytic processing of Nrf1 to remove its N-terminal polypeptides during maturation of the CNC-bZIP factor. Toxicology and Applied Pharmacology, 2018, 360, 160-184.	2.8	21
10	ProLIF: quantitative integrin protein-protein interactions and synergistic membrane effects on proteoliposomes. Journal of Cell Science, 2018, 132, .	2.0	9
11	The UDP-glucose ceramide glycosyltransferase (UGCG) and the link to multidrug resistance protein 1 (MDR1). BMC Cancer, 2018, 18, 153.	2.6	42
12	Purification and Validation of Lipid Transfer Proteins. Methods in Molecular Biology, 2017, 1609, 231-239.	0.9	3
13	Specificity of the mammalian glycolipid transfer proteins. Chemistry and Physics of Lipids, 2016, 194, 72-78.	3.2	14
14	Metabolic Conversion of Ceramides in HeLa Cells - A Cholesteryl Phosphocholine Delivery Approach. PLoS ONE, 2015, 10, e0143385.	2.5	13
15	Alternation in the Glycolipid Transfer Protein Expression Causes Changes in the Cellular Lipidome. PLoS ONE, 2014, 9, e97263.	2.5	23
16	Membranes and mammalian glycolipid transferring proteins. Chemistry and Physics of Lipids, 2014, 178, 27-37.	3.2	21
17	Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature, 2013, 501, 116-120.	27.8	136
18	Glycolipid Transfer Protein Expression Is Affected by Glycosphingolipid Synthesis. PLoS ONE, 2013, 8, e70283.	2.5	17

#	Article	IF	Citations
19	Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 47-54.	2.6	22
20	The intermembrane ceramide transport catalyzed by CERT is sensitive to the lipid environment. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 229-235.	2.6	18
21	Effects of bile salts on glucosylceramide containing membranes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2886-2893.	2.6	4
22	Glycolipid transfer proteins and membrane interaction. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 267-272.	2.6	59
23	The glycolipid transfer protein interacts with the vesicle-associated membrane protein-associated protein VAP-A. Biochemical and Biophysical Research Communications, 2009, 388, 395-399.	2.1	26
24	Identification of a glycosphingolipid transfer protein GLTP1 in <i>Arabidopsisâ€∫thaliana</i> Iournal, 2008, 275, 3421-3437.	4.7	34
25	Glycolipid transfer proteins. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 746-760.	2.4	73
26	Human glycolipid transfer protein—Intracellular localization and effects on the sphingolipid synthesis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1353-1363.	2.4	22
27	Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. Journal of Cell Biology, 2007, 179, 101-115.	5.2	257
28	Membrane Curvature Effects on Glycolipid Transfer Protein Activity. Langmuir, 2007, 23, 11726-11733.	3.5	22
29	Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature, 2007, 449, 62-67.	27.8	359
30	Molecular features of phospholipids that affect glycolipid transfer protein-mediated galactosylceramide transfer between vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 807-812.	2.6	25
31	Membrane interaction and activity of the glycolipid transfer protein. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1732-1742.	2.6	27
32	Structural Evidence for Adaptive Ligand Binding of Glycolipid Transfer Protein. Journal of Molecular Biology, 2006, 355, 224-236.	4.2	49
33	Characterization of SCP-2 from Euphorbia lagascae reveals that a single Leu/Met exchange enhances sterol transfer activity. FEBS Journal, 2006, 273, 5641-5655.	4.7	14
34	Galactose oxidase action on galactose containing glycolipids—a fluorescence method. Chemistry and Physics of Lipids, 2006, 142, 103-110.	3.2	6
35	Protein mediated glycolipid transfer is inhibited FROM sphingomyelin membranes but enhanced TO sphingomyelin containing raft like membranes. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1669, 87-94.	2.6	30
36	Synthesis, characterisation and theoretical calculations of 2,6-diaminopurine etheno derivatives. Organic and Biomolecular Chemistry, 2005, 3, 2924.	2.8	42

#	Article	IF	CITATIONS
37	The 3-Hydroxy Group and 4,5-trans Double Bond of Sphingomyelin Are Essential for Modulation of Galactosylceramide Transmembrane Asymmetry. Biophysical Journal, 2005, 88, 2670-2680.	0.5	23
38	Plants Express a Lipid Transfer Protein with High Similarity to Mammalian Sterol Carrier Protein-2. Journal of Biological Chemistry, 2004, 279, 53544-53553.	3.4	28
39	Crystallization and X-ray analysis of bovine glycolipid transfer protein. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 703-705.	2.5	16
40	New nucleoside analogs from 2-amino-9-(\hat{l}^2 -d-ribofuranosyl)purine. Organic and Biomolecular Chemistry, 2004, 2, 821-827.	2.8	8
41	Glycolipid Intermembrane Transfer Is Accelerated by HET-C2, a Filamentous Fungus Gene Product Involved in the Cellâ [^] Cell Incompatibility Responseâ€. Biochemistry, 2003, 42, 535-542.	2.5	43
42	Probing for Preferential Interactions among Sphingolipids in Bilayer Vesicles Using the Glycolipid Transfer Proteinâ€. Biochemistry, 2002, 41, 266-273.	2.5	27
43	Sphingomyelin Modulates the Transbilayer Distribution of Galactosylceramide in Phospholipid Membranes. Journal of Biological Chemistry, 2002, 277, 19476-19481.	3.4	34
44	Involvement of the Acid Sphingomyelinase Pathway in UVA-induced Apoptosis. Journal of Biological Chemistry, 2001, 276, 11775-11782.	3.4	134
45	Cloning and Expression of Glycolipid Transfer Protein from Bovine and Porcine Brain. Journal of Biological Chemistry, 2000, 275, 5104-5110.	3.4	54
46	Involvement of Nuclear Factor of Activated T Cells Activation in UV Response. Journal of Biological Chemistry, 2000, 275, 9143-9149.	3.4	57
47	Charged Membrane Surfaces Impede the Protein-Mediated Transfer of Glycosphingolipids between Phospholipid Bilayersâ€. Biochemistry, 2000, 39, 1067-1075.	2.5	41
48	A Fluorescence Resonance Energy Transfer Approach for Monitoring Protein-Mediated Glycolipid Transfer between Vesicle Membranes. Analytical Biochemistry, 1999, 268, 297-304.	2.4	57
49	The influence of hydrophobic mismatch on androsterol/phosphatidylcholine interactions in model membranes. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1372, 331-338.	2.6	9
50	Molecular Interaction and Lateral Domain Formation in Monolayers Containing Cholesterol and Phosphatidylcholines with Acyl- or Alkyl-Linked C16 Chains. Langmuir, 1996, 12, 1284-1290.	3.5	39
51	Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids?. Chemistry and Physics of Lipids, 1996, 81, 69-80.	3.2	95
52	The Effect of Sterol Side Chain Conformation on Lateral Lipid Domain Formation in Monolayer Membranes., 1996,, 255-264.		0
53	Lateral domain formation in cholesterol/phospholipid monolayers as affected by the sterol side chain conformation. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1240, 237-247.	2.6	39
54	Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface â€" a comparative study with two different reporter molecules. Lipids and Lipid Metabolism, 1995, 1254, 22-29.	2.6	54

PETER MATTJUS

#	Article	IF	CITATION
55	Monolayer interaction of cholesterol with phosphatidylcholines: effects of phospholipid acyl chain length. Chemistry and Physics of Lipids, 1994, 74, 195-203.	3.2	24
56	Availability for enzyme-catalyzed oxidation of cholesterol in mixed monolayers containing both phosphatidylcholine and sphingomyelin. Chemistry and Physics of Lipids, 1994, 71, 73-81.	3.2	23
57	Cholesterol transport from plasma membranes to intracellular membranes is inhibited by 3β-[2-(diethylamino) ethoxy]androst-5-en-17-one. Lipids and Lipid Metabolism, 1994, 1211, 317-325.	2.6	49
58	Interaction of Cholesterol with Sphingomyelin in Monolayers and Vesicles. Biochemistry, 1994, 33, 11776-11781.	2.5	156