Yuzheng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/191240/publications.pdf

Version: 2024-02-01

		218381	197535
58	2,706	26	49
papers	citations	h-index	g-index
59	59	59	4184
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nature Biotechnology, 2022, 40, 779-786.	9.4	35
2	Monitoring NAD(H) and NADP(H) dynamics during organismal development with genetically encoded fluorescent biosensors. Cell Regeneration, 2022, 11 , 5 .	1.1	4
3	Association of Human Whole Blood NAD+ Contents With Aging. Frontiers in Endocrinology, 2022, 13, 829658.	1.5	14
4	Light-switchable diphtherin transgene system combined with losartan for triple negtative breast cancer therapy based on nano drug delivery system. International Journal of Pharmaceutics, 2022, 618, 121613.	2.6	5
5	Association between NAD ⁺ levels and anaemia among women in communityâ€based study. Journal of Cellular and Molecular Medicine, 2022, 26, 2698-2705.	1.6	5
6	NADPH metabolism determines the leukemogenic capacity and drug resistance of AML cells. Cell Reports, 2022, 39, 110607.	2.9	7
7	Spatiotemporal monitoring of NAD+ metabolism with fluorescent biosensors. Mechanisms of Ageing and Development, 2022, 204, 111657.	2.2	4
8	A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nature Communications, 2021, 12, 615.	5.8	16
9	Bone marrow niche ATP levels determine leukemia-initiating cell activity via P2X7 in leukemic models. Journal of Clinical Investigation, 2021, 131, .	3.9	43
10	Oxidative phosphorylation enhances the leukemogenic capacity and resistance to chemotherapy of B cell acute lymphoblastic leukemia. Science Advances, 2021, 7, .	4.7	24
11	A redox probe screens MTHFD1 as a determinant of gemcitabine chemoresistance in cholangiocarcinoma. Cell Death Discovery, 2021, 7, 89.	2.0	5
12	Discovery of Natural Products Targeting NQO1 via an Approach Combining Network-Based Inference and Identification of Privileged Substructures. Journal of Chemical Information and Modeling, 2021, 61, 2486-2498.	2.5	7
13	A ROS-responsive fluorescent probe detecting experimental colitis by functional polymeric nanoparticles. International Journal of Pharmaceutics, 2021, 609, 121125.	2.6	7
14	Colon-targeted delivery of tacrolimus using pH-responsive polymeric nanoparticles for murine colitis therapy. International Journal of Pharmaceutics, 2021, 606, 120836.	2.6	30
15	The alternative activity of nuclear PHGDH contributes to tumour growth under nutrient stress. Nature Metabolism, 2021, 3, 1357-1371.	5.1	32
16	Metabolic remodelling during early mouse embryo development. Nature Metabolism, 2021, 3, 1372-1384.	5.1	45
17	A fine-tuning mechanism underlying self-control for autophagy: deSUMOylation of BECN1 by SENP3. Autophagy, 2020, 16, 975-990.	4.3	49
18	Spatiotemporally controllable diphtheria toxin expression using a light-switchable transgene system combining multifunctional nanoparticle delivery system for targeted melanoma therapy. Journal of Controlled Release, 2020, 319, 1-14.	4.8	25

#	Article	IF	CITATIONS
19	Safe and Efficacious Diphtheria Toxin-Based Treatment for Melanoma: Combination of a Light-On Gene-Expression System and Nanotechnology. Molecular Pharmaceutics, 2020, 17, 301-315.	2.3	6
20	Sensitive detection via the time-resolved fluorescence of circularly permuted yellow fluorescent protein biosensors. Sensors and Actuators B: Chemical, 2020, 321, 128614.	4.0	6
21	MDH1-mediated malate-aspartate NADH shuttle maintains the activity levels of fetal liver hematopoietic stem cells. Blood, 2020, 136, 553-571.	0.6	13
22	Illuminating NAD+ Metabolism in Live Cells and InÂVivo Using a Genetically Encoded Fluorescent Sensor. Developmental Cell, 2020, 53, 240-252.e7.	3.1	71
23	Lighting Up Live-Cell and In Vivo Central Carbon Metabolism with Genetically Encoded Fluorescent Sensors. Annual Review of Analytical Chemistry, 2020, 13, 293-314.	2.8	41
24	A single-component light sensor system allows highly tunable and direct activation of gene expression in bacterial cells. Nucleic Acids Research, 2020, 48, e33-e33.	6.5	44
25	Cloning and Expression of a Novel Leucine Dehydrogenase: Characterization and L-tert-Leucine Production. Frontiers in Bioengineering and Biotechnology, 2020, 8, 186.	2.0	17
26	A combination of LightOn gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy. Acta Pharmaceutica Sinica B, 2020, 10, 1741-1753.	5.7	17
27	Blakeslea trispora Photoreceptors: Identification and Functional Analysis. Applied and Environmental Microbiology, 2020, 86, .	1.4	7
28	A Negative Regulator of Carotenogenesis in <i>Blakeslea trispora</i> . Applied and Environmental Microbiology, 2020, 86, .	1.4	10
29	Fine-Tuning of PGC1 \hat{l} ± Expression Regulates Cardiac Function and Longevity. Circulation Research, 2019, 125, 707-719.	2.0	47
30	A genome-wide positioning systems network algorithm for in silico drug repurposing. Nature Communications, 2019, 10, 3476.	5.8	134
31	Ultrafast internal conversion dynamics of bilirubin bound to UnaG and its N57A mutant. Physical Chemistry Chemical Physics, 2019, 21, 2365-2371.	1.3	17
32	SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS ONE, 2019, 14, e0211796.	1.1	40
33	Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors. Analytical Chemistry, 2019, 91, 3869-3876.	3.2	9
34	Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nature Biotechnology, 2019, 37, 1287-1293.	9.4	206
35	Metabolic Imaging Reveals a Unique Preference of Symmetric Cell Division and Homing of Leukemia-Initiating Cells in an Endosteal Niche. Cell Metabolism, 2019, 29, 950-965.e6.	7.2	49
36	Spatiotemporal Imaging of Cellular Energy Metabolism with Genetically-Encoded Fluorescent Sensors in Brain. Neuroscience Bulletin, 2018, 34, 875-886.	1.5	19

3

#	Article	lF	Citations
37	Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics. Free Radical Biology and Medicine, 2018, 121, 26-37.	1.3	2
38	Glucose monitoring in living cells with single fluorescent protein-based sensors. RSC Advances, 2018, 8, 2485-2489.	1.7	30
39	PPM1K Regulates Hematopoiesis and Leukemogenesis through CDC20-Mediated Ubiquitination of MEIS1 and p21. Cell Reports, 2018, 23, 1461-1475.	2.9	46
40	Monitoring cellular redox state under hypoxia using a fluorescent sensor based on eel fluorescent protein. Free Radical Biology and Medicine, 2018, 120, 255-265.	1.3	19
41	Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors. Antioxidants and Redox Signaling, 2018, 28, 213-229.	2.5	24
42	Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nature Protocols, 2018, 13, 2362-2386.	5.5	70
43	A Single-Component Optogenetic System Allows Stringent Switch of Gene Expression in Yeast Cells. ACS Synthetic Biology, 2018, 7, 2045-2053.	1.9	34
44	A genetically encoded toolkit for tracking live-cell histidine dynamics in space and time. Scientific Reports, 2017, 7, 43479.	1.6	34
45	Light-induced protein degradation in human-derived cells. Biochemical and Biophysical Research Communications, 2017, 487, 241-246.	1.0	18
46	Smad5 acts as an intracellular pH messenger and maintains bioenergetic homeostasis. Cell Research, 2017, 27, 1083-1099.	5.7	34
47	Using Fractional Intensities of Time-resolved Fluorescence to Sensitively Quantify NADH/NAD+ with Genetically Encoded Fluorescent Biosensors. Scientific Reports, 2017, 7, 4209.	1.6	18
48	Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nature Methods, 2017, 14, 720-728.	9.0	223
49	In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD+/NADH redox state. Nature Protocols, 2016, 11, 1345-1359.	5.5	119
50	A redox mechanism underlying nucleolar stress sensing by nucleophosmin. Nature Communications, 2016, 7, 13599.	5.8	94
51	Real-time and high-throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD+/NADH sensors. Free Radical Biology and Medicine, 2016, 100, 43-52.	1.3	46
52	<scp>SIRT</scp> 3â€dependent <scp>GOT</scp> 2 acetylation status affects the malate–aspartate <scp>NADH</scp> shuttle activity and pancreatic tumor growth. EMBO Journal, 2015, 34, 1110-1125.	3.5	152
53	SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents. Cell Metabolism, 2015, 21, 777-789.	7.2	311
54	Profiling metabolic states with genetically encoded fluorescent biosensors for NADH. Current Opinion in Biotechnology, 2015, 31, 86-92.	3.3	40

YUZHENG ZHAO

#	Article	IF	CITATIONS
55	Organelle-Specific Nitric Oxide Detection in Living Cells via HaloTag Protein Labeling. PLoS ONE, 2015, 10, e0123986.	1.1	12
56	Real-Time Assessment of the Metabolic Profile of Living Cells with Genetically Encoded NADH Sensors. Methods in Enzymology, 2014, 542, 349-367.	0.4	13
57	Frex and FrexH. Bioengineered, 2012, 3, 183-190.	1.4	6
58	Genetically Encoded Fluorescent Sensors for Intracellular NADH Detection. Cell Metabolism, 2011, 14, 555-566.	7. 2	247