List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1912369/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Promising Tb3+-doped gallium tungsten-phosphate glass scintillator: Spectroscopy, energy transfer<br>and UV/X-ray sensing. Journal of Alloys and Compounds, 2022, 904, 164016.<br>Luminescence and Scintillation of                                                                                                                                                                                                                                                                                                                                    | 2.8 | 10        |
| 2  | [Nb <sub>2</sub> O <sub>2</sub> F <sub>9</sub> ] <sup>3â€"</sup> -Dimer-Containing Oxideâ€"Fluorides:<br>Cs <sub>10</sub> (Nb <sub>2</sub> O <sub>2</sub> F <sub>9</sub> ) <sub>3</sub> F,<br>Cs <sub>9.4</sub> K <sub>0.6</sub> (Nb <sub>2</sub> O <sub>2</sub> Csub>2F <sub>9</sub> ) <sub>9</sub> ) <sub>3</sub> F, and<br>Cs <sub>10</sub> (Nb <sub>2</sub> O <sub>2</sub> F <sub>9</sub> ) <sub>3</sub> Csub>10(Nb <sub>2</sub> F, and<br>Cs <sub>10</sub> (Nb <sub>2</sub> O <sub>2</sub> F <sub>9</sub> ) <sub>3</sub> Cl. Inorganic Chemistry, | 1.9 | 3         |
| 3  | 2022, 61, 3256-3262.<br>The kinetic parameters of the main thermoluminescence glow peak of Al2O3:C,Mg: A critical evaluation<br>of different analytical methods. Journal of Luminescence, 2022, 247, 118848.                                                                                                                                                                                                                                                                                                                                           | 1.5 | 3         |
| 4  | Luminescence and Scintillation in the Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb. Inorganics, 2022, 10, 83.                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2 | 4         |
| 5  | Fluorophosphate glasses doped with Eu3+ and Dy3+ for X-ray radiography. Journal of Alloys and Compounds, 2021, 863, 158382.                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.8 | 11        |
| 6  | OSL response of α-Al2O3:C, Mg exposed to beta and UVC radiation: A comparative investigation. Journal of Luminescence, 2021, 236, 118058.                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5 | 2         |
| 7  | Low/intermediate temperature pyrolyzed polysiloxane derived ceramics with increased carbon for electrical applications. Journal of the European Ceramic Society, 2021, 41, 5882-5889.                                                                                                                                                                                                                                                                                                                                                                  | 2.8 | 10        |
| 8  | Comparative investigation of transparent polycrystalline ceramic and single crystal Lu3Al5O12:Ce<br>scintillators: Microstructural and thermoluminescence analyses. Journal of Luminescence, 2021, 238,<br>118229.                                                                                                                                                                                                                                                                                                                                     | 1.5 | 4         |
| 9  | Magnesium aluminate spinel for optically stimulated luminescence dosimetry. Journal of Alloys and<br>Compounds, 2021, 880, 160503.                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.8 | 9         |
| 10 | Synthesis of Hydrated Ternary Lanthanide-Containing Chlorides Exhibiting X-ray Scintillation and Luminescence. Inorganic Chemistry, 2021, 60, 15371-15382.                                                                                                                                                                                                                                                                                                                                                                                             | 1.9 | 3         |
| 11 | Radioluminescence of Lu3Al5O12:Ce single crystal and transparent polycrystalline ceramic at high temperatures. Ceramics International, 2020, 46, 26335-26338.                                                                                                                                                                                                                                                                                                                                                                                          | 2.3 | 12        |
| 12 | Insights into the Proton Transport Mechanism in TiO <sub>2</sub> Simple Oxides by <i>In Situ</i> Raman Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 38012-38018.                                                                                                                                                                                                                                                                                                                                                                        | 4.0 | 22        |
| 13 | Luminescence of undoped and Ce-doped hexagonal BiPO4. Journal of Luminescence, 2020, 228, 117626.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5 | 4         |
| 14 | Thermoluminescence of UV-irradiated α-Al2O3:C,Mg. Journal of Luminescence, 2020, 223, 117195.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5 | 8         |
| 15 | Characterization of the optically stimulated luminescence (OSL) response of beta-irradiated alexandrite-polymer composites. Journal of Luminescence, 2020, 226, 117479.                                                                                                                                                                                                                                                                                                                                                                                | 1.5 | 9         |
| 16 | Luminescence of ZnS:Ag scintillator prepared by the hydrothermal reaction method: Effects of<br>reaction temperature and time, Ag concentration, and co-doping with Al. Optical Materials, 2020, 107,<br>110015.                                                                                                                                                                                                                                                                                                                                       | 1.7 | 4         |
| 17 | Scintillation, luminescence and optical properties of Ce-Doped borosilicate glasses. Optical Materials, 2020, 104, 109847.                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7 | 19        |
| 18 | A glass neutron detector with machine learning capabilities. Journal of Instrumentation, 2019, 14, P06013-P06013.                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5 | 2         |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Progress and challenges towards the development of a new optically stimulated luminescence (OSL)<br>material based on MgB4O7:Ce,Li. Journal of Luminescence, 2019, 212, 242-249.                                      | 1.5 | 28        |
| 20 | Luminescence of Ce-doped aluminophosphate glasses. Journal of Materials Science: Materials in Electronics, 2019, 30, 16774-16780.                                                                                     | 1.1 | 6         |
| 21 | Luminescence of undoped commercial ZnS crystals: A critical review and new evidence on the role of impurities using photoluminescence and electrical transient spectroscopy. Journal of Applied Physics, 2019, 125, . | 1.1 | 29        |
| 22 | Fabrication and characterization of ZnS:Ag-based ultrafiltration membrane scintillator. Optical Materials, 2019, 88, 424-428.                                                                                         | 1.7 | 5         |
| 23 | Laser sintering and photoluminescence study of Tb-doped yttrium aluminum garnet ceramics. Ceramics<br>International, 2019, 45, 3797-3802.                                                                             | 2.3 | 13        |
| 24 | Effects of sintering temperature on the microstructure and luminescence of LuAG:Pr ceramics.<br>Radiation Measurements, 2019, 122, 34-39.                                                                             | 0.7 | 5         |
| 25 | Correlation between thermoluminescence and optically stimulated luminescence of α-Al2O3:C,Mg.<br>Journal of Luminescence, 2019, 206, 298-301.                                                                         | 1.5 | 10        |
| 26 | Thermoluminescence and radioluminescence of alexandrite mineral. Journal of Luminescence, 2019, 206, 455-461.                                                                                                         | 1.5 | 9         |
| 27 | Thermoluminescence and radioluminescence of α-Al2O3:C,Mg at high temperatures. Journal of Luminescence, 2018, 204, 598-602.                                                                                           | 1.5 | 12        |
| 28 | Fabrication and characterization of a composite dosimeter based on natural alexandrite. Optical<br>Materials, 2018, 85, 281-286.                                                                                      | 1.7 | 8         |
| 29 | Direct inkjet printing of miniaturized luminescent YAG:Er3+ from sol-gel precursor. Optical Materials, 2017, 68, 11-18.                                                                                               | 1.7 | 7         |
| 30 | Thick Er-doped silica films sintered using CO2 laser for scintillation applications. Optical Materials, 2017, 68, 63-69.                                                                                              | 1.7 | 9         |
| 31 | Radioluminescence and thermoluminescence of rare earth doped and co-doped YF3. Radiation Measurements, 2017, 106, 79-83.                                                                                              | 0.7 | 6         |
| 32 | Investigation of Ce3+ luminescence in borate-rich borosilicate glasses. Journal of Non-Crystalline<br>Solids, 2017, 471, 357-361.                                                                                     | 1.5 | 11        |
| 33 | Permeation and optical properties of YAG:Er3+ fiber membrane scintillators prepared by novel sol–gel/electrospinning method. Journal of Sol-Gel Science and Technology, 2017, 83, 35-43.                              | 1.1 | 12        |
| 34 | High-density scintillating glasses for a proton imaging detector. Optical Materials, 2017, 68, 58-62.                                                                                                                 | 1.7 | 23        |
| 35 | Laser sintering of persistent luminescent CaAl2O4:Eu2+Dy3+ ceramics. Optical Materials, 2017, 68, 2-6.                                                                                                                | 1.7 | 27        |
| 36 | Incorporation of Pr into LuAG ceramics. Optical Materials, 2017, 68, 53-57.                                                                                                                                           | 1.7 | 3         |

3

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Luminescence investigation of Ce incorporation in garnet-type Li7La3Zr2O12. Optical Materials, 2017, 68, 7-10.                                                                        | 1.7 | 12        |
| 38 | (Invited) Laser Sintering of Polycrystalline Ceramic Scintillators: The Case Study of YAG:Ce. ECS<br>Meeting Abstracts, 2017, , .                                                     | 0.0 | 0         |
| 39 | Effects of Sintering Temperature on Openâ€Volume Defects and Thermoluminescence of Yttria and Lutetia Ceramics. Journal of the American Ceramic Society, 2016, 99, 1449-1454.         | 1.9 | 4         |
| 40 | Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy. Journal of Materials Science, 2015, 50, 3183-3188.                                        | 1.7 | 16        |
| 41 | Luminescence and thermal lensing characterization of singly Eu3+ and Tm3+ doped Y2O3 transparent ceramics. Journal of Luminescence, 2015, 161, 306-312.                               | 1.5 | 28        |
| 42 | Luminescence and scintillation enhancement of Y2O3:Tm transparent ceramic through post-fabrication thermal processing. Journal of Luminescence, 2015, 165, 56-61.                     | 1.5 | 13        |
| 43 | Stability of Grafted Polymer Nanoscale Films toward Gamma Irradiation. ACS Applied Materials &<br>Interfaces, 2015, 7, 19455-19465.                                                   | 4.0 | 16        |
| 44 | Investigation of Pr incorporation in LuAG powders and ceramics. , 2014, , .                                                                                                           |     | 0         |
| 45 | The effects of thermal processing on the luminescence of Y2O3:Tm transparent ceramic. , 2014, , .                                                                                     |     | 0         |
| 46 | Systematic development of new thermoluminescence and optically stimulated luminescence materials.<br>Journal of Luminescence, 2013, 133, 203-210.                                     | 1.5 | 86        |
| 47 | Rare earth-doped nanocrystalline MgF2: Synthesis, luminescence and thermoluminescence. Optical<br>Materials, 2013, 35, 2461-2464.                                                     | 1.7 | 21        |
| 48 | Spectral engineering of LaF3:Ce3+ nanoparticles: The role of Ce3+ in surface sites. Journal of Applied Physics, 2012, 111, .                                                          | 1.1 | 17        |
| 49 | Electron energy-loss spectroscopy investigation of dopant homogeneity in Tb-doped Y2O3 nanoparticles prepared by solution combustion synthesis. Optical Materials, 2012, 34, 671-674. | 1.7 | 2         |
| 50 | Synthesis, structure, and scintillation of Ce-doped gadolinium oxyorthosilicate nanoparticles prepared by solution combustion synthesis. Journal of Applied Physics, 2011, 110, .     | 1.1 | 5         |
| 51 | Structural and optical properties of rare earth–doped (Ba0.77Ca0.23)1â^'x(Sm, Nd, Pr, Yb)xTiO3. Journal of Applied Physics, 2011, 109, .                                              | 1.1 | 26        |
| 52 | Fluoride Nanoscintillators. Journal of Nanomaterials, 2011, 2011, 1-6.                                                                                                                | 1.5 | 40        |
| 53 | Luminescence properties of MgO produced by solution combustion synthesis and doped with lanthanides and Li. Journal of Luminescence, 2011, 131, 1058-1065.                            | 1.5 | 64        |
| 54 | Scintillation of rare earth doped fluoride nanoparticles. Applied Physics Letters, 2011, 99, .                                                                                        | 1.5 | 15        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis and luminescent characteristics of one-dimensional europium doped Gd2O3 phosphors.<br>Applied Physics A: Materials Science and Processing, 2010, 100, 1137-1142.                        | 1.1 | 10        |
| 56 | Feasibility of using oxyorthosilicates as optically stimulated luminescence detectors. Radiation Measurements, 2010, 45, 681-683.                                                                 | 0.7 | 14        |
| 57 | Annealing effects on the photoluminescence yield of Gd2O3:Eu nanoparticles produced by solution combustion synthesis. Radiation Measurements, 2010, 45, 611-614.                                  | 0.7 | 11        |
| 58 | Nanophosphor aluminum oxide: Luminescence response of a potential dosimetric material. Journal of<br>Luminescence, 2010, 130, 825-831.                                                            | 1.5 | 37        |
| 59 | Luminescence properties of Ce-doped oxyorthosilicate nanophosphors and single crystals. Journal of<br>Luminescence, 2010, 130, 2309-2316.                                                         | 1.5 | 37        |
| 60 | The effect of hydrostatic pressure on the combustion synthesis of Y2O3:Bi nanophosphor. Optical<br>Materials, 2010, 32, 652-656.                                                                  | 1.7 | 10        |
| 61 | Synthesis, luminescence and scintillation of rare earth doped lanthanum fluoride nanoparticles.<br>Optical Materials, 2010, 33, 136-140.                                                          | 1.7 | 26        |
| 62 | Scintillation of nanoparticles: Case study of rare earth doped fluorides. , 2010, , .                                                                                                             |     | 0         |
| 63 | Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles. Materials, 2010, 3, 2053-2068.                                                                                       | 1.3 | 47        |
| 64 | Luminescence and structural properties of oxyorthosilicate and Al <sub>2</sub> O <sub>3</sub><br>nanophosphors. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 904-909. | 0.8 | 8         |
| 65 | Radioluminescence Investigation of Ion-Irradiated Phosphors. , 2009, , .                                                                                                                          |     | 1         |
| 66 | Multifunction Gd2O3:Eu nanocrystals produced by solution combustion synthesis: Structural,<br>luminescent, and magnetic characterization. Journal of Applied Physics, 2008, 103, .                | 1.1 | 50        |
| 67 | Y 2 O 3 : Bi nanophosphor: Solution combustion synthesis, structure, and luminescence. Journal of Applied Physics, 2008, 104, .                                                                   | 1.1 | 86        |
| 68 | Science and Application of Oxyorthosilicate Nanophosphors. IEEE Transactions on Nuclear Science, 2008, 55, 1532-1535.                                                                             | 1.2 | 32        |
| 69 | Development and characterization of nanocomposite scintillators for gamma-ray detection. , 2008, , .                                                                                              |     | 1         |
| 70 | EPR and Luminescence of \${hbox {F}}^{+}\$ Centers in Bulk and Nanophosphor Oxyorthosilicates. IEEE Transactions on Nuclear Science, 2008, 55, 1118-1122.                                         | 1.2 | 28        |
| 71 | Deposition of hard amorphous hydrogenated carbon films by radiofrequency parallel-plate hollow-cathode plasmas. Diamond and Related Materials, 2007, 16, 616-622.                                 | 1.8 | 12        |
| 72 | LaF 3 :Ce nanocomposite scintillator for gamma-ray detection. Proceedings of SPIE, 2007, , .                                                                                                      | 0.8 | 13        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Nanocomposite scintillators for radiation detection and nuclear spectroscopy. Nuclear Instruments<br>and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated<br>Equipment, 2007, 579, 15-18. | 0.7 | 101       |
| 74 | Magnetic properties of cobalt nanoparticles obtained by ion implantation into amorphous silica.<br>Nuclear Instruments & Methods in Physics Research B, 2007, 257, 447-450.                                                            | 0.6 | 6         |
| 75 | Effects of ion beam irradiation on self-trapped defects in single-crystal Lu2SiO5. Journal of Luminescence, 2007, 124, 5-9.                                                                                                            | 1.5 | 3         |
| 76 | The central role of oxygen on H+-irradiated Lu2SiO5 luminescence. Journal of Luminescence, 2007, 124, 173-177.                                                                                                                         | 1.5 | 2         |
| 77 | Effects of Tb doping on the photoluminescence of Y2O3:Tb nanophosphors. Journal of Luminescence, 2007, 126, 838-842.                                                                                                                   | 1.5 | 72        |
| 78 | Luminescent properties of nanophosphors. Radiation Measurements, 2007, 42, 675-678.                                                                                                                                                    | 0.7 | 30        |
| 79 | Optical and structural characterization of nanostructured Y 2 O 3 :Tb. , 2006, , .                                                                                                                                                     |     | 7         |
| 80 | Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2SiO5:Ce nanophosphors. Applied Physics Letters, 2006, 88, 103108.                                                                                 | 1.5 | 84        |
| 81 | Ion irradiation of porous silicon: The role of surface states. Nuclear Instruments & Methods in<br>Physics Research B, 2006, 242, 164-166.                                                                                             | 0.6 | 6         |
| 82 | Effects of ion irradiation on cobalt nanocomposite. Nuclear Instruments & Methods in Physics Research B, 2006, 250, 201-205.                                                                                                           | 0.6 | 5         |
| 83 | A novel method for extracting oscillator strength of select rare-earth ion optical transitions in nanostructured dielectric materials. Solid State Communications, 2006, 139, 497-500.                                                 | 0.9 | 15        |
| 84 | Structural and optical characterization of fluorinated hydrogenated silicon carbide films deposited by pulsed glow discharge. Surface and Coatings Technology, 2006, 200, 6079-6082.                                                   | 2.2 | 2         |
| 85 | Chemical bonding investigation of amorphous hydrogenated Si–N alloys deposited by plasma<br>immersion ion processing. Thin Solid Films, 2006, 494, 219-222.                                                                            | 0.8 | 3         |
| 86 | Investigation of the magnetic susceptibility of nanocomposites obtained in zero-field-cooled conditions. Journal of Vacuum Science & Technology B, 2006, 24, 321.                                                                      | 1.3 | 14        |
| 87 | Array of cobalt nanoparticles in silica: Synthesis and effects of thermal annealing. Journal of Applied Physics, 2006, 99, 104307.                                                                                                     | 1.1 | 7         |
| 88 | Structural, mechanical, and nanoscale tribological properties of nitrogen-incorporated fluorine–carbon films. Thin Solid Films, 2005, 482, 109-114.                                                                                    | 0.8 | 7         |
| 89 | Sputter-deposited boron carbide films: Structural and mechanical characterization. Surface and Coatings Technology, 2005, 200, 1472-1475.                                                                                              | 2.2 | 27        |
| 90 | The effects of ion irradiation on porous silicon photoluminescence. Journal of Applied Physics, 2005, 97, 033528.                                                                                                                      | 1.1 | 16        |

| #   | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Synthesis of metallic nanocrystals with size and depth control: A case study. Journal of Vacuum<br>Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics<br>Processing and Phenomena, 2005, 23, 1470.                                            | 1.6 | 1         |
| 92  | Effects of thermal annealing and ageing on porous silicon photoluminescence. Philosophical<br>Magazine, 2005, 85, 2611-2620.                                                                                                                                                           | 0.7 | 5         |
| 93  | The role of the chemical nature of implanted species on quenching and recovery of photoluminescence in ion-irradiated porous silicon. Journal of Applied Physics, 2005, 98, 076108.                                                                                                    | 1.1 | 7         |
| 94  | Positron annihilation spectroscopy of sputtered boron carbide films. Diamond and Related Materials, 2005, 14, 201-205.                                                                                                                                                                 | 1.8 | 7         |
| 95  | Microwave plasma enhanced chemical vapor deposition of diamond in silicon pores. Diamond and Related Materials, 2005, 14, 220-225.                                                                                                                                                     | 1.8 | 2         |
| 96  | Formation of silicon nanocrystals in SiO[sub 2] by oxireduction reaction induced by impurity<br>implantation and annealing. Journal of Vacuum Science & Technology an Official Journal of the<br>American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1669. | 1.6 | 4         |
| 97  | Quantum confinement contribution to porous silicon photoluminescence spectra. Journal of Applied<br>Physics, 2004, 96, 197-203.                                                                                                                                                        | 1.1 | 32        |
| 98  | Incorporation of fluorine in hydrogenated silicon carbide films deposited by pulsed glow discharge.<br>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1223-1228.                                                                                    | 0.9 | 5         |
| 99  | Role of intericosahedral chains on the hardness of sputtered boron carbide films. Applied Physics<br>Letters, 2004, 84, 4173-4175.                                                                                                                                                     | 1.5 | 15        |
| 100 | Amorphous silicon nitride films of different composition deposited at room temperature by pulsed<br>glow discharge plasma immersion ion implantation and deposition. Journal of Vacuum Science and<br>Technology A: Vacuum, Surfaces and Films, 2004, 22, 2342-2346.                   | 0.9 | 20        |
| 101 | X-ray photoelectron spectroscopy investigation of boron carbide films deposited by sputtering.<br>Surface Science, 2004, 572, 418-424.                                                                                                                                                 | 0.8 | 155       |
| 102 | Effects of thermal annealing on the structural, mechanical, and tribological properties of hard<br>fluorinated carbon films deposited by plasma enhanced chemical vapor deposition. Journal of Vacuum<br>Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 2321-2328.    | 0.9 | 5         |
| 103 | Synthesis of cobalt nanoparticles by ion implantation and effects of postimplantation annealing.<br>Journal of Applied Physics, 2004, 96, 4444-4450.                                                                                                                                   | 1.1 | 41        |
| 104 | Amorphous hydrogenated carbon films deposited by PECVD in methane atmospheres highly diluted in argon: effect of the substrate temperature. Diamond and Related Materials, 2004, 13, 1454-1458.                                                                                        | 1.8 | 16        |
| 105 | Amorphous hydrogenated carbon films deposited by PECVD: influence of the substrate temperature on film growth and microstructure. Journal of Non-Crystalline Solids, 2004, 338-340, 503-508.                                                                                           | 1.5 | 14        |
| 106 | Nanotribological Properties of Amorphous Carbon-Fluorine Films. Tribology Letters, 2003, 15, 177-180.                                                                                                                                                                                  | 1.2 | 42        |
| 107 | Hard amorphous carbon–fluorine films deposited by PECVD using C2H2–CF4 gas mixtures as precursor atmospheres. Diamond and Related Materials, 2003, 12, 2037-2041.                                                                                                                      | 1.8 | 28        |
| 108 | The role of trapped Ar atoms in the mechanical properties of boron carbide films deposited by dc-magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1639-1643.                                                                    | 0.9 | 17        |

| #   | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Fluorinated a-C:H films investigated by thermal-induced gas effusion. Diamond and Related Materials, 2002, 11, 1831-1836.                                                                                                                                                   | 1.8 | 10        |
| 110 | Nanoporosity in plasma deposited amorphous carbon films investigated by small-angle X-ray scattering. Diamond and Related Materials, 2002, 11, 1946-1951.                                                                                                                   | 1.8 | 11        |
| 111 | Plasma deposition of amorphous carbon films from CH4 atmospheres highly diluted in Ar. Thin Solid<br>Films, 2002, 419, 46-53.                                                                                                                                               | 0.8 | 24        |
| 112 | Film growth and relationship between microstructure and mechanical properties of a-C:H:F films deposited by PECVD. Diamond and Related Materials, 2001, 10, 125-131.                                                                                                        | 1.8 | 49        |
| 113 | Fluorine incorporation into amorphous hydrogenated carbon films deposited by plasma-enhanced chemical vapor deposition: structural modifications investigated by X-ray photoelectron spectrometry and Raman spectroscopy. Diamond and Related Materials, 2001, 10, 910-914. | 1.8 | 22        |
| 114 | Surface modifications in diamond-like carbon films submitted to low-energy nitrogen ion bombardment. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 699-704.                                                                                           | 0.6 | 4         |
| 115 | Germanium implantation into amorphous carbon films. Nuclear Instruments & Methods in Physics<br>Research B, 2001, 175-177, 442-447.                                                                                                                                         | 0.6 | 3         |
| 116 | Amorphous carbon films deposited by direct current-magnetron sputtering: Void distribution<br>investigated by gas effusion and small angle x-ray scattering experiments. Journal of Vacuum Science<br>and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2344.         | 0.9 | 6         |
| 117 | Structural and mechanical characterization of fluorinated amorphous-carbon films deposited by plasma decomposition of CF[sub 4]–CH[sub 4] gas mixtures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2230.                             | 0.9 | 77        |
| 118 | Comparative study of anneal-induced modifications of amorphous carbon films deposited by dc<br>magnetron sputtering at different argon plasma pressures. Diamond and Related Materials, 2000, 9,<br>680-684.                                                                | 1.8 | 28        |
| 119 | Boron carbide films deposited by a magnetron sputter–ion plating process: film composition and tribological properties. Diamond and Related Materials, 2000, 9, 489-493.                                                                                                    | 1.8 | 50        |
| 120 | Raman spectroscopy and scanning electron microscopy investigation of annealed amorphous<br>carbon–germanium films deposited by d.c. magnetron sputtering. Diamond and Related Materials, 1999,<br>8, 668-672.                                                               | 1.8 | 28        |
| 121 | Voids Investigation of Amorphous Carbon Films Deposited by DC-Magnetron Sputtering: A Small Angle<br>x-ray Scattering and Gas Thermal Effusion Study. Materials Research Society Symposia Proceedings,<br>1999, 593, 383.                                                   | 0.1 | 0         |
| 122 | Investigation on the chemical, structural and mechanical properties of carbon-germanium films deposited by dc-magnetron sputtering. Diamond and Related Materials, 1998, 7, 440-443.                                                                                        | 1.8 | 27        |
| 123 | Investigation on Dissipated Energy Distribution in Low Energy Electron Irradiated Buried Layer in LiF<br>and NaF Films. Materials Science Forum, 1997, 239-241, 725-728.                                                                                                    | 0.3 | 3         |