Riccarda Antiochia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1912092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microneedle-based nanoporous gold electrochemical sensor for real-time catecholamine detection. Mikrochimica Acta, 2022, 189, 180.	5.0	16
2	Laccase Mediator Cocktail System as a Sustainable Skin Whitening Agent for Deep Eumelanin Decolorization. International Journal of Molecular Sciences, 2022, 23, 6238.	4.1	5
3	Electrochemical biosensors for SARS-CoV-2 detection: Voltametric or impedimetric transduction?. Bioelectrochemistry, 2022, 147, 108190.	4.6	12
4	Novel Amperometric Biosensor Based on Tyrosinase/Chitosan Nanoparticles for Sensitive and Interference-Free Detection of Total Catecholamine. Biosensors, 2022, 12, 519.	4.7	14
5	Developments in biosensors for CoV detection and future trends. Biosensors and Bioelectronics, 2021, 173, 112777.	10.1	78
6	Nanostructure-Based Electrochemical Immunosensors as Diagnostic Tools. Electrochem, 2021, 2, 10-28.	3.3	21
7	Novel Nanoarchitectures Based on Lignin Nanoparticles for Electrochemical Eco-Friendly Biosensing Development. Nanomaterials, 2021, 11, 718.	4.1	9
8	Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. Biosensors, 2021, 11, 110.	4.7	39
9	Pressureless sinterability study of ZrB2–SiC composites containing hexagonal BN and phenolic resin additives. Synthesis and Sintering, 2021, 1, 99-104.	1.6	16
10	Gold Nanoparticles/Carbon Nanotubes and Gold Nanoporous as Novel Electrochemical Platforms for L-Ascorbic Acid Detection: Comparative Performance and Application. Chemosensors, 2021, 9, 229.	3.6	7
11	Evaluation of different storage processes of passion fruit (Passiflora edulis Sims) using a new dual biosensor platform based on a conducting polymer. Microchemical Journal, 2020, 154, 104573.	4.5	6
12	A glucose/oxygen enzymatic fuel cell exceeding 1.5ÂV based on glucose dehydrogenase immobilized onto polyMethylene blue-carbon nanotubes modified double-sided screen printed electrodes: Proof-of-concept in human serum and saliva. Journal of Power Sources, 2020, 476, 228615.	7.8	14
13	Lignin nanoparticles are renewable and functional platforms for the concanavalin a oriented immobilization of glucose oxidase–peroxidase in cascade bio-sensing. RSC Advances, 2020, 10, 29031-29042.	3.6	31
14	Use of a Thermophile Desiccation-Tolerant Cyanobacterial Culture and Os Redox Polymer for the Preparation of Photocurrent Producing Anodes. Frontiers in Bioengineering and Biotechnology, 2020, 8, 900.	4.1	7
15	Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives. Mikrochimica Acta, 2020, 187, 639.	5.0	77
16	Biocide Activity of Green Quercetin-Mediated Synthesized Silver Nanoparticles. Nanomaterials, 2020, 10, 909.	4.1	24
17	Microneedle-based biosensor for minimally-invasive lactate detection. Biosensors and Bioelectronics, 2019, 123, 152-159.	10.1	164
18	Layer by layer supported laccase on lignin nanoparticles catalyzes the selective oxidation of alcohols to aldehydes. Catalysis Science and Technology, 2019, 9, 4125-4134.	4.1	33

#	Article	IF	CITATIONS
19	Minimally Invasive Glucose Monitoring Using a Highly Porous Gold Microneedles-Based Biosensor: Characterization and Application in Artificial Interstitial Fluid. Catalysts, 2019, 9, 580.	3.5	66
20	Transdermal Microneedle Array-Based Biosensor for Real Time Simultaneous Lactate and Glucose Monitoring. Proceedings (mdpi), 2019, 15, 42.	0.2	1
21	Microneedle-based electrochemical devices for transdermal biosensing: a review. Current Opinion in Electrochemistry, 2019, 16, 42-49.	4.8	51
22	Comparison of Direct and Mediated Electron Transfer for Bilirubin Oxidase from Myrothecium Verrucaria. Effects of Inhibitors and Temperature on the Oxygen Reduction Reaction. Catalysts, 2019, 9, 1056.	3.5	14
23	Minimallyâ€invasive Microneedleâ€based Biosensor Array for Simultaneous Lactate and Glucose Monitoring in Artificial Interstitial Fluid. Electroanalysis, 2019, 31, 374-382.	2.9	87
24	Highly sensitive, stable and selective hydrogen peroxide amperometric biosensors based on peroxidases from different sources wired by Os-polymer: A comparative study. Solid State Ionics, 2018, 314, 178-186.	2.7	23
25	The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase. Analytical and Bioanalytical Chemistry, 2018, 410, 3253-3264.	3.7	35
26	Evaluation of novel Fmoc-tripeptide based hydrogels as immobilization supports for electrochemical biosensors. Microchemical Journal, 2018, 137, 105-110.	4.5	14
27	A Glucose/Oxygen Enzymatic Fuel Cell based on Gold Nanoparticles modified Graphene Screen-Printed Electrode. Proof-of-Concept in Human Saliva. Sensors and Actuators B: Chemical, 2018, 256, 921-930.	7.8	72
28	Metal Oxide Nanoparticle Based Electrochemical Sensor for Total Antioxidant Capacity (TAC) Detection in Wine Samples. Biosensors, 2018, 8, 108.	4.7	32
29	Enhanced Direct Electron Transfer of Fructose Dehydrogenase Rationally Immobilized on a 2-Aminoanthracene Diazonium Cation Grafted Single-Walled Carbon Nanotube Based Electrode. ACS Catalysis, 2018, 8, 10279-10289.	11.2	43
30	Highly Sensitive Membraneless Fructose Biosensor Based on Fructose Dehydrogenase Immobilized onto Aryl Thiol Modified Highly Porous Gold Electrode: Characterization and Application in Food Samples. Analytical Chemistry, 2018, 90, 12131-12136.	6.5	58
31	Graphene and 2D-Like Nanomaterials: Different Biofunctionalization Pathways for Electrochemical Biosensor Development. , 2018, , 1-35.		7
32	Functionalized Tyrosinase-Lignin Nanoparticles as Sustainable Catalysts for the Oxidation of Phenols. Nanomaterials, 2018, 8, 438.	4.1	41
33	Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells. Sensors, 2018, 18, 1319.	3.8	75
34	Layer-by-Layer Preparation of Microcapsules and Nanocapsules of Mixed Polyphenols with High Antioxidant and UV-Shielding Properties. Biomacromolecules, 2018, 19, 3883-3893.	5.4	40
35	Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosensors and Bioelectronics, 2017, 89, 152-166.	10.1	316
36	A bimetallic nanocoral Au decorated with Pt nanoflowers (bio)sensor for H2O2 detection at low potential. Methods, 2017, 129, 89-95.	3.8	9

#	Article	IF	CITATIONS
37	Application of a Nanostructured Enzymatic Biosensor Based on Fullerene and Gold Nanoparticles to Polyphenol Detection. Methods in Molecular Biology, 2017, 1572, 41-53.	0.9	4
38	A multi-analytical approach for the validation of a jellified electrolyte: Application to the study of ancient bronze patina. Microchemical Journal, 2017, 134, 154-163.	4.5	22
39	Improved DET communication between cellobiose dehydrogenase and a gold electrode modified with a rigid self-assembled monolayer and green metal nanoparticles: The role of an ordered nanostructuration. Biosensors and Bioelectronics, 2017, 88, 196-203.	10.1	44
40	Green Synthesis and Characterization of Gold and Silver Nanoparticles and their Application for Development of a Third Generation Lactose Biosensor. Electroanalysis, 2017, 29, 77-86.	2.9	78
41	AuNPs-functionalized PANABA-MWCNTs nanocomposite-based impedimetric immunosensor for 2,4-dichlorophenoxy acetic acid detection. Biosensors and Bioelectronics, 2017, 93, 52-56.	10.1	44
42	A Third Generation Glucose Biosensor Based on Cellobiose Dehydrogenase Immobilized on a Glassy Carbon Electrode Decorated with Electrodeposited Gold Nanoparticles: Characterization and Application in Human Saliva. Sensors, 2017, 17, 1912.	3.8	67
43	A Comparative Study between Hydrogen Peroxide Amperometric Biosensors Based on Different Peroxidases Wired by Os-Polymer: Applications in Water, Milk and Human Urine. Proceedings (mdpi), 2017, 1, 699.	0.2	0
44	A Flow SPR Immunosensor Based on a Sandwich Direct Method. Biosensors, 2016, 6, 22.	4.7	18
45	Catalase-Based Modified Graphite Electrode for Hydrogen Peroxide Detection in Different Beverages. Journal of Analytical Methods in Chemistry, 2016, 2016, 1-12.	1.6	15
46	Nanotechnology-Based Surface Plasmon Resonance Affinity Biosensors for <i>In Vitro</i> Diagnostics. International Journal of Analytical Chemistry, 2016, 2016, 1-15.	1.0	23
47	One-step rapid synthesis of Au-Pt nanofems for electrochemical sensing and biosensing. , 2016, , .		0
48	Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry, 2016, 112, 125-131.	4.6	61
49	Tracing the origin of beer samples by NMR and chemometrics: Trappist beers as a case study. Electrophoresis, 2016, 37, 2710-2719.	2.4	27
50	Inhibition-based biosensor for atrazine detection. Sensors and Actuators B: Chemical, 2016, 224, 552-558.	7.8	54
51	Recent advances in Third Generation Biosensors based on Au and Pt Nanostructured Electrodes. TrAC - Trends in Analytical Chemistry, 2016, 79, 151-159.	11.4	47
52	Inhibition-based first-generation electrochemical biosensors: theoretical aspects and application to 2,4-dichlorophenoxy acetic acid detection. Analytical and Bioanalytical Chemistry, 2016, 408, 3203-3211.	3.7	21
53	Untargeted NMR-Based Methodology in the Study of Fruit Metabolites. Molecules, 2015, 20, 4088-4108.	3.8	50
54	Electrochemical Characterization of Graphene and MWCNT Screen-Printed Electrodes Modified with AuNPs for Laccase Biosensor Development. Nanomaterials, 2015, 5, 1995-2006.	4.1	44

#	Article	IF	CITATIONS
55	Bilirubin Oxidase from Myrothecium verrucaria Physically Absorbed on Graphite Electrodes. Insights into the Alternative Resting Form and the Sources of Activity Loss. PLoS ONE, 2015, 10, e0132181.	2.5	30
56	Recent trends in electrochemical nanobiosensors for environmental analysis. International Journal of Environment and Health, 2015, 7, 267.	0.3	22
57	Affinity-based biosensors for pathogenic bacteria detection. International Journal of Environmental Technology and Management, 2015, 18, 185.	0.2	6
58	DNA-based biosensors for Hg2+ determination by polythymine–methylene blue modified electrodes. Biosensors and Bioelectronics, 2015, 67, 524-531.	10.1	63
59	An Overview of the Latest Grapheneâ€Based Sensors for Glucose Detection: the Effects of Graphene Defects. Electroanalysis, 2015, 27, 16-31.	2.9	91
60	Highly efficient synthesis of aldehydes by layer by layer multi-walled carbon nanotubes (MWCNTs) laccase mediator systems. Applied Catalysis A: General, 2015, 499, 77-88.	4.3	17
61	Development of Carbon-Based Nano-Composite Materials for Direct Electron Transfer Based Biosensors. Journal of Nanoscience and Nanotechnology, 2015, 15, 3423-3428.	0.9	9
62	Amine oxidase-based biosensors for spermine and spermidine determination. Analytical and Bioanalytical Chemistry, 2015, 407, 1131-1137.	3.7	29
63	Rapid Determination of Sucrose in Fruit Juices: A New Sensitive Carbon Nanotube Paste Osmium-Polymer Mediated Biosensor. Journal of Food Research, 2014, 3, 101.	0.3	6
64	CYP-dependent Metabolism of Antitumor Pyrazolo[3,4-d]pyrimidine Derivatives Is Characterized by an Oxidative Dechlorination Reaction. Drug Metabolism and Pharmacokinetics, 2014, 29, 433-440.	2.2	7
65	A new osmium-polymer modified screen-printed graphene electrode for fructose detection. Sensors and Actuators B: Chemical, 2014, 195, 287-293.	7.8	55
66	Untargeted and targeted methodologies in the study of tea (Camellia sinensis L.). Food Research International, 2014, 63, 275-289.	6.2	44
67	Composite Material Based on Macroporous Polyaniline and Osmium Redox Complex for Biosensor Development. Electroanalysis, 2014, 26, 1623-1630.	2.9	10
68	NMR methodologies in the analysis of blueberries. Electrophoresis, 2014, 35, 1615-1626.	2.4	46
69	Versatile and Efficient Immobilization of 2-Deoxyribose-5-phosphate Aldolase (DERA) on Multiwalled Carbon Nanotubes. ACS Catalysis, 2014, 4, 3059-3068.	11.2	26
70	Affinity-based biosensors in sport medicine and doping control analysis. Bioanalysis, 2014, 6, 225-245.	1.5	18
71	A comparison among three different analytical methods to test the scavenging properties of different integrators against radicalic stress. Pakistan Journal of Pharmaceutical Sciences, 2014, 27, 25-32.	0.2	0
72	Rapid and direct determination of fructose in food: A new osmium-polymer mediated biosensor. Food Chemistry, 2013, 140, 742-747.	8.2	55

#	Article	IF	CITATIONS
73	Determination of lactose by a novel third generation biosensor based on a cellobiose dehydrogenase and aryl diazonium modified single wall carbon nanotubes electrode. Sensors and Actuators B: Chemical, 2013, 177, 64-69.	7.8	46
74	Undecenyl resorc[4]arene in the chair conformation as preorganized synthon for olefin metathesis. RSC Advances, 2013, 3, 17567.	3.6	9
75	Affinity-based biosensors for heavy metal detection. International Journal of Environment and Health, 2013, 6, 290.	0.3	2
76	Osmium-Polymer Modified Carbon Nanotube Paste Electrode for Detection of Sucrose and Fructose. Materials Sciences and Applications, 2013, 04, 15-22.	0.4	4
77	Amperometric Biosensors for Detection of Sugars Based on the Electrical Wiring of Different Pyranose Oxidases and Pyranose Dehydrogenases with Osmium Redox Polymer on Graphite Electrodes. Electroanalysis, 2007, 19, 294-302.	2.9	65
78	A Calibration-Base Method for the Evaluation of the Detection Limit of an Electrochemical Biosensor. Electroanalysis, 2007, 19, 1227-1230.	2.9	27
79	The use of vetiver for remediation of heavy metal soil contamination. Analytical and Bioanalytical Chemistry, 2007, 388, 947-956.	3.7	55
80	Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages. Biosensors and Bioelectronics, 2007, 22, 2611-2617.	10.1	117
81	Alcohol Biosensor Based on the Immobilization of Meldola Blue and Alcohol Dehydrogenase into a Carbon Nanotube Paste Electrode. Analytical Letters, 2006, 39, 1643-1655.	1.8	27
82	Electrochemical determination of pharmaceuticals in spiked water samples. Journal of Hazardous Materials, 2005, 122, 219-225.	12.4	56
83	Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes: kinetic considerations for use of a redox mediator in solution and dissolved in the paste. Analytical and Bioanalytical Chemistry, 2005, 381, 1355-1361.	3.7	30
84	Determination of oxygen permeability of food wrapping films by an amperometric sensor. International Journal of Environmental Analytical Chemistry, 2005, 85, 959-969.	3.3	2
85	Amperometric Mediated Carbon Nanotube Paste Biosensor for Fructose Determination. Analytical Letters, 2004, 37, 1657-1669.	1.8	63
86	An Extended Method for the Practical Evaluation of the Standard Rate Constant from Cyclic Voltammetric Data. Electroanalysis, 2004, 16, 505-506.	2.9	290
87	Single-Wall Carbon Nanotube Paste Electrodes: a Comparison with Carbon Paste, Platinum and Glassy Carbon Electrodes via Cyclic Voltammetric Data. Electroanalysis, 2004, 16, 1451-1458.	2.9	105
88	A comparison between the use of a redox mediator in solution and of surface modified electrodes in the electrocatalytic oxidation of nicotinamide adenine dinucleotide. Bioelectrochemistry, 2004, 64, 157-163.	4.6	26
89	The Interference of Oxygen on Diaphorase fromClostridium kluveri in the Mediated Electrocatalytic Oxidation of Reduced Dihydronicotinamide Adenine Dinucleotide. Electroanalysis, 2003, 15, 1713-1718.	2.9	2
90	Kinetic and Thermodynamic Aspects of NAD-Related Enzyme-Linked Mediated Bioelectrocatalysis. Electroanalysis, 2002, 14, 1256-1261.	2.9	19

6

#	Article	IF	CITATIONS
91	Kinetic considerations on the electrogenerated luminescence of luminol at platinum electrode in the presence of hydrogen peroxide and oxygen. Annali Di Chimica, 2002, 92, 271-80.	0.6	3
92	Determination of Enzyme Kinetic Constants for Electrochemically Mediated Enzyme Reactions. Application to the Diaphorase-Nicotinamide Adenine Dinucleotide System withp-Methylaminophenolsulfate as an Electron Carrier. Electroanalysis, 2001, 13, 582-586.	2.9	9
93	A General Method for the Electrochemical Evaluation of the Bimolecular Rate Constant in Enzyme Catalyzed Reaction Kinetics. Electroanalysis, 2001, 13, 601-602.	2.9	1
94	Electrocatalytic Oxidation of Dihydronicotinamide Adenine Dinucleotide with Ferrocene Carboxylic Acid by Diaphorase fromClostridium kluveri. Remarks on the Kinetic Approaches Usually Adopted. Electroanalysis, 1999, 11, 129-133.	2.9	15
95	A Tri-Enzyme Electrode Probe for the Sequential Determination of Fructose and Glucose in the Same Sample. Analytical Letters, 1997, 30, 683-697.	1.8	22
96	Purification and sensor applications of an oxygen insensitive, thermophilic diaphorase. Analytica Chimica Acta, 1997, 345, 17-28.	5.4	27
97	Spectrophotometric study of the reaction between cobalt(II)-dipeptide complexes and molecular oxygen. Transition Metal Chemistry, 1994, 19, 359.	1.4	3