
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1912029/publications.pdf Version: 2024-02-01

FENCILE HUO

#	Article	IF	CITATIONS
1	Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, 2012, 4, 310-316.	6.6	1,857
2	Smart responsive phosphorescent materials for data recording and security protection. Nature Communications, 2014, 5, 3601.	5.8	694
3	Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nature Photonics, 2019, 13, 406-411.	15.6	579
4	Polymer Pen Lithography. Science, 2008, 321, 1658-1660.	6.0	501
5	Metal–organic framework composites: from fundamentals to applications. Nanoscale, 2015, 7, 7482-7501.	2.8	410
6	A Family of Metalâ€Organic Frameworks Exhibiting Sizeâ€Selective Catalysis with Encapsulated Nobleâ€Metal Nanoparticles. Advanced Materials, 2014, 26, 4056-4060.	11.1	396
7	Three-Layer Composite Magnetic Nanoparticle Probes for DNA. Journal of the American Chemical Society, 2005, 127, 15362-15363.	6.6	289
8	Multiâ€shelled Hollow Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 5512-5516.	7.2	280
9	Cellulose Nanofiber @ Conductive Metal–Organic Frameworks for High-Performance Flexible Supercapacitors. ACS Nano, 2019, 13, 9578-9586.	7.3	227
10	Mesoporous Metal–Organic Frameworks with Sizeâ€, Shapeâ€, and Spaceâ€Distributionâ€Controlled Pore Structure. Advanced Materials, 2015, 27, 2923-2929.	11.1	217
11	Engineering ZIFâ€8 Thin Films for Hybrid MOFâ€Based Devices. Advanced Materials, 2012, 24, 3970-3974.	11.1	213
12	Designable Yolk–Shell Nanoparticle@MOF Petalous Heterostructures. Chemistry of Materials, 2014, 26, 1119-1125.	3.2	207
13	Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nature Communications, 2017, 8, 14429.	5.8	179
14	MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 8483-8488.	5.2	178
15	Molecular printing. Nature Chemistry, 2009, 1, 353-358.	6.6	170
16	Coating Two-Dimensional Nanomaterials with Metal–Organic Frameworks. ACS Nano, 2014, 8, 8695-8701.	7.3	168
17	Highly Stretchable and Transparent Thermistor Based on Self-Healing Double Network Hydrogel. ACS Applied Materials & Interfaces, 2018, 10, 19097-19105.	4.0	168
18	Beam pen lithography. Nature Nanotechnology, 2010, 5, 637-640.	15.6	165

2

#	Article	IF	CITATIONS
19	Submonolayered Ru Deposited on Ultrathin Pd Nanosheets used for Enhanced Catalytic Applications. Advanced Materials, 2016, 28, 10282-10286.	11.1	148
20	Conductive MOF-Modified Separator for Mitigating the Shuttle Effect of Lithium–Sulfur Battery through a Filtration Method. ACS Applied Materials & Interfaces, 2019, 11, 11459-11465.	4.0	141
21	Selenium ontaining Polymer@Metalâ€Organic Frameworks Nanocomposites as an Efficient Multiresponsive Drug Delivery System. Advanced Functional Materials, 2017, 27, 1605465.	7.8	139
22	Scanning probe block copolymer lithography. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20202-20206.	3.3	131
23	Programmable Logic in Metal–Organic Frameworks for Catalysis. Advanced Materials, 2021, 33, e2007442.	11.1	129
24	Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media. Journal of Solid State Chemistry, 2013, 206, 27-31.	1.4	126
25	Designing MOFs-Derived FeS ₂ @Carbon Composites for High-Rate Sodium Ion Storage with Capacitive Contributions. ACS Applied Materials & Interfaces, 2018, 10, 33097-33104.	4.0	126
26	Synthesis and Selfâ€Assembly of Monodispersed Metalâ€Organic Framework Microcrystals. Chemistry - an Asian Journal, 2013, 8, 69-72.	1.7	121
27	Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. Nano Letters, 2017, 17, 4122-4129.	4.5	117
28	Multiplexed Protein Arrays Enabled by Polymer Pen Lithography: Addressing the Inking Challenge. Angewandte Chemie - International Edition, 2009, 48, 7626-7629.	7.2	111
29	Approaching a stable, green twisted heteroacene through "clean reaction―strategy. Chemical Communications, 2012, 48, 5974.	2.2	110
30	Growth of Quasi-Free-Standing Single-Layer Blue Phosphorus on Tellurium Monolayer Functionalized Au(111). ACS Nano, 2017, 11, 4943-4949.	7.3	109
31	On-Wire Lithography-Generated Molecule-Based Transport Junctions: A New Testbed for Molecular Electronics. Journal of the American Chemical Society, 2008, 130, 8166-8168.	6.6	104
32	CuO/Cu ₂ O porous composites: shape and composition controllable fabrication inherited from metal organic frameworks and further application in CO oxidation. Journal of Materials Chemistry A, 2015, 3, 5294-5298.	5.2	100
33	Metal–Organic Frameworks as Promising Photosensitizers for Photoelectrochemical Water Splitting. Advanced Science, 2016, 3, 1500243.	5.6	100
34	Stretchable Conductive Fibers Based on a Cracking Control Strategy for Wearable Electronics. Advanced Functional Materials, 2018, 28, 1801683.	7.8	100
35	Multiple Active Sites of Carbon for Highâ€Rate Surfaceâ€Capacitive Sodiumâ€Ion Storage. Angewandte Chemie - International Edition, 2019, 58, 13584-13589.	7.2	98
36	Interweaving metal–organic framework-templated Co–Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. Journal of Materials Chemistry A, 2018, 6, 24050-24057.	5.2	95

#	Article	IF	CITATIONS
37	The Role of Defects in Metal–Organic Frameworks for Nitrogen Reduction Reaction: When Defects Switch to Features. Advanced Functional Materials, 2021, 31, 2010052.	7.8	92
38	Sn Nanoparticles Encapsulated in 3D Nanoporous Carbon Derived from a Metal–Organic Framework for Anode Material in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 17172-17177.	4.0	89
39	Construction of Hierarchically Porous Nanoparticles@Metal–Organic Frameworks Composites by Inherent Defects for the Enhancement of Catalytic Efficiency. Advanced Materials, 2018, 30, e1803263.	11.1	88
40	Microenvironment of MOF Channel Coordination with Pt NPs for Selective Hydrogenation of Unsaturated Aldehydes. ACS Catalysis, 2020, 10, 5805-5813.	5.5	88
41	Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode. Nano Energy, 2019, 58, 673-679.	8.2	84
42	Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Storage Materials, 2019, 18, 222-228.	9.5	84
43	Metal–organic framework-based porous matrix membranes for improving mass transfer in forward osmosis membranes. Journal of Membrane Science, 2015, 492, 392-399.	4.1	80
44	Matrixâ€Assisted Dipâ€Pen Nanolithography and Polymer Pen Lithography. Small, 2010, 6, 1077-1081.	5.2	79
45	Selfâ€Assembled Metalâ€Organic Frameworks Crystals for Chemical Vapor Sensing. Small, 2014, 10, 3672-3676.	5.2	77
46	SnSe ₂ Nanoparticles Chemically Embedded in a Carbon Shell for High-Rate Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2020, 12, 2346-2353.	4.0	77
47	Alcoholâ€Mediated Resistanceâ€Switching Behavior in Metal–Organic Frameworkâ€Based Electronic Devices. Angewandte Chemie - International Edition, 2016, 55, 8884-8888.	7.2	72
48	Wellâ€Ðispersed and Sizeâ€Controlled Supported Metal Oxide Nanoparticles Derived from MOF Composites and Further Application in Catalysis. Small, 2015, 11, 3130-3134.	5.2	70
49	Fabrication of Porous Matrix Membrane (PMM) Using Metal-Organic Framework as Green Template for Water Treatment. Scientific Reports, 2014, 4, 3740.	1.6	70
50	Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Research, 2021, 14, 1-28.	5.8	69
51	Controlled Encapsulation of Functional Organic Molecules within Metal–Organic Frameworks: In Situ Crystalline Structure Transformation. Advanced Materials, 2017, 29, 1606290.	11.1	65
52	Site‧elective Catalysis of a Multifunctional Linear Molecule: The Steric Hindrance of Metal–Organic Framework Channels. Advanced Materials, 2018, 30, e1800643.	11.1	62
53	Synthesis of porous CoMoO ₄ nanorods as a bifunctional cathode catalyst for a Li–O ₂ battery and superior anode for a Li-ion battery. Nanoscale, 2017, 9, 3898-3904.	2.8	60
54	Compartmentalization within Selfâ€Assembled Metal–Organic Framework Nanoparticles for Tandem Reactions. Advanced Functional Materials, 2018, 28, 1802479.	7.8	55

#	Article	IF	CITATIONS
55	Metal–Organic Framework Derivatives for Improving the Catalytic Activity of the CO Oxidation Reaction. ACS Applied Materials & Interfaces, 2017, 9, 15394-15398.	4.0	53
56	Crystalâ€Growthâ€Dominated Fabrication of Metal–Organic Frameworks with Orderly Distributed Hierarchical Porosity. Angewandte Chemie - International Edition, 2020, 59, 2457-2464.	7.2	53
57	Fabrication of Flexible Transparent Electrode with Enhanced Conductivity from Hierarchical Metal Grids. ACS Applied Materials & Interfaces, 2017, 9, 39110-39115.	4.0	52
58	Metal–Organic Frameworks as Metal Ion Precursors for the Synthesis of Nanocomposites for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 4763-4769.	7.2	52
59	Hollow Ni–CoSe ₂ Embedded in Nitrogen-Doped Carbon Nanocomposites Derived from Metal–Organic Frameworks for High-Rate Anodes. ACS Applied Materials & Interfaces, 2018, 10, 38845-38852.	4.0	51
60	Highâ€Precision Size Recognition and Separation in Synthetic 1D Nanochannels. Angewandte Chemie - International Edition, 2019, 58, 15922-15927.	7.2	50
61	Selective Growth of a Discontinuous Subnanometer Pd Film on Carbon Defects for Li–O ₂ Batteries. ACS Energy Letters, 2019, 4, 2782-2786.	8.8	50
62	Unconventional Nucleation and Oriented Growth of ZIFâ€8 Crystals on Nonâ€Polar Surface. Advanced Materials, 2012, 24, 5954-5958.	11.1	46
63	Free-standing one-dimensional plasmonic nanostructures. Nanoscale, 2012, 4, 66-75.	2.8	46
64	Synthesis of stable heterogeneous catalysts by supporting carbon-stabilized palladium nanoparticles on MOFs. Nanoscale, 2015, 7, 8720-8724.	2.8	46
65	Multiâ€shelled Hollow Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 5604-5608.	1.6	45
66	Ultrathin 2D Cu-porphyrin MOF nanosheets as a heterogeneous catalyst for styrene oxidation. Materials Chemistry Frontiers, 2019, 3, 1580-1585.	3.2	45
67	Catalyst surfaces with tunable hydrophilicity and hydrophobicity: metal–organic frameworks toward controllable catalytic selectivity. Chemical Communications, 2018, 54, 3936-3939.	2.2	43
68	Hydrogen-bonding based multilayer assemblies by self-deposition of dendrimer. Chemical Communications, 2003, , 874-875.	2.2	41
69	Encapsulation of metal layers within metal–organic frameworks as hybrid thin films for selective catalysis. Nano Research, 2016, 9, 158-164.	5.8	40
70	Multicomponent metal–organic framework derivatives for optimizing the selective catalytic performance of styrene epoxidation reaction. Nanoscale, 2018, 10, 8772-8778.	2.8	40
71	In situ synthesis of large-area single sub-10 nm nanoparticle arrays by polymer pen lithography. Nanoscale, 2014, 6, 749-752.	2.8	39
72	Wearable Leather-Based Electronics for Respiration Monitoring. ACS Applied Bio Materials, 2019, 2, 1427-1431.	2.3	39

#	Article	IF	CITATIONS
73	Controlled incorporation of nanoparticles in metal–organic framework hybrid thin films. Chemical Communications, 2014, 50, 4296.	2.2	38
74	Leatherâ€Based Strain Sensor with Hierarchical Structure for Motion Monitoring. Advanced Materials Technologies, 2019, 4, 1900442.	3.0	37
75	Selenium-functionalized metal-organic frameworks as enzyme mimics. Nano Research, 2018, 11, 5761-5768.	5.8	35
76	Functional Macroâ€Microporous Metal–Organic Frameworks for Improving the Catalytic Performance. Small Methods, 2019, 3, 1800547.	4.6	35
77	Thermal Shrinkage Behavior of Metal–Organic Frameworks. Advanced Functional Materials, 2020, 30, 2001389.	7.8	35
78	Hybrid Crystals Comprising Metal–Organic Frameworks and Functional Particles: Synthesis and Applications. Small, 2014, 10, 4371-4378.	5.2	34
79	Regulation of Cobalt–Nickel LDHs' Structure and Components for Optimizing the Performance of an Electrochemical Sensor. ACS Applied Nano Materials, 2019, 2, 6387-6396.	2.4	33
80	Rational Synthesis and Regulation of Hollow Structural Materials for Electrocatalytic Nitrogen Reduction Reaction. Advanced Science, 2022, 9, e2104183.	5.6	33
81	A review of sampling, energy supply and intelligent monitoring for long-term sweat sensors. Npj Flexible Electronics, 2022, 6, .	5.1	33
82	Synthesis of MOFs and Their Composite Structures through Sacrificial-Template Strategy. Crystal Growth and Design, 2015, 15, 1017-1021.	1.4	31
83	Elucidating the Sole Contribution from Electromagnetic Nearâ€Fields in Plasmonâ€Enhanced Cu ₂ O Photocathodes. Advanced Energy Materials, 2016, 6, 1501250.	10.2	31
84	Directed Selfâ€Assembly of MOFâ€Derived Nanoparticles toward Hierarchical Structures for Enhanced Catalytic Activity in CO Oxidation. Advanced Energy Materials, 2019, 9, 1901754.	10.2	30
85	Modifiers versus Channels: Creating Shapeâ€Selective Catalysis of Metal Nanoparticles/Porous Nanomaterials. Angewandte Chemie - International Edition, 2021, 60, 976-982.	7.2	30
86	Wearable Sweat Biosensors Refresh Personalized Health/Medical Diagnostics. Research, 2021, 2021, 9757126.	2.8	29
87	Multiple Active Sites of Carbon for Highâ€Rate Surfaceâ€Capacitive Sodiumâ€Ion Storage. Angewandte Chemie, 2019, 131, 13718-13723.	1.6	28
88	Co nanoparticles combined with nitrogen-doped graphitic carbon anchored on carbon fibers as a self-standing air electrode for flexible zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 7184-7191.	5.2	28
89	Engineering channels of metal–organic frameworks to enhance catalytic selectivity. Chemical Communications, 2019, 55, 11770-11773.	2.2	27
90	Encapsulation of Hydrophobic Guests within Metal–Organic Framework Capsules for Regulating Host–Guest Interaction. Chemistry of Materials, 2020, 32, 3553-3560.	3.2	27

#	Article	IF	CITATIONS
91	Facile synthesis of highly stable heterogeneous catalysts by entrapping metal nanoparticles within mesoporous carbon. Journal of Materials Chemistry A, 2014, 2, 5847.	5.2	26
92	Skin Conformal and Antibacterial PPy‣eather Electrode for ECG Monitoring. Advanced Electronic Materials, 2020, 6, 2000259.	2.6	26
93	Exploring the Fundamental Roles of Functionalized Ligands in Platinum@Metal–Organic Framework Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 52660-52667.	4.0	26
94	Self-assembled monolayers of new dendron-thiols: manipulation of the patterned surface and wetting properties. Chemical Communications, 2001, , 1906-1907.	2.2	24
95	In situ formation of new organic ligands to construct two novel self-charge-transfer Pb(ii)-based frameworks. CrystEngComm, 2012, 14, 75-78.	1.3	22
96	Parallel Near-Field Photolithography with Metal-Coated Elastomeric Masks. Langmuir, 2015, 31, 1210-1217.	1.6	21
97	Metalâ€Organic Framework Wears a Protective Cover for Improved Stability. Chemistry - A European Journal, 2017, 23, 7663-7666.	1.7	21
98	Regulating Electronic Status of Platinum Nanoparticles by Metal–Organic Frameworks for Selective Catalysis. CCS Chemistry, 2021, 3, 1607-1614.	4.6	21
99	Transitional MOFs: Exposing Metal Sites with Porosity for Enhancing Catalytic Reaction Performance. ACS Applied Materials & Interfaces, 2020, 12, 23968-23975.	4.0	20
100	Frontiers and Structural Engineering for Building Flexible Zinc–Air Batteries. Advanced Science, 2022, 9, e2103954.	5.6	20
101	Alcoholâ€Mediated Resistanceâ€5witching Behavior in Metal–Organic Frameworkâ€Based Electronic Devices. Angewandte Chemie, 2016, 128, 9030-9034.	1.6	19
102	Actuation of Self-Assembled Two-Component Rodlike Nanostructures. Nano Letters, 2008, 8, 4441-4445.	4.5	18
103	A green-synthesized phosphorescent carbon dot composite for multilevel anti-counterfeiting. Nanoscale Advances, 2021, 3, 4536-4540.	2.2	18
104	Fast Intercalation in Locally Ordered Carbon Nanocrystallites for Superior Potassium Ions Storage. Advanced Functional Materials, 2022, 32, 2109672.	7.8	18
105	3D-conductive pathway written on leather for highly sensitive and durable electronic whisker. Journal of Materials Chemistry C, 2020, 8, 9748-9754.	2.7	15
106	Vapor–Liquid–Solid Growth of Endotaxial Semiconductor Nanowires. Nano Letters, 2012, 12, 5565-5570.	4.5	14
107	Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler. Scientific Reports, 2015, 5, 16808.	1.6	14
108	Prediction Descriptor for Catalytic Activity of Platinum Nanoparticles/Metal–Organic Framework Composites. ACS Applied Materials & Interfaces, 2021, 13, 38325-38332.	4.0	14

#	Article	IF	CITATIONS
109	Fabrication of Two-Dimensional Metal–Organic Framework Nanosheets through Crystal Dissolution–Growth Kinetics. ACS Applied Materials & Interfaces, 2022, 14, 7192-7199.	4.0	13
110	Multifunctional Alumina Composites with Toughening and Crackâ€Healing Features Via Incorporation of NiAl Particles. Journal of the American Ceramic Society, 2015, 98, 1618-1625.	1.9	12
111	Binding Site Effect in Metalâ€Organic Frameworks for Property Regulation of Metal Nanoparticles. Small Structures, 2021, 2, 2000119.	6.9	12
112	The Encounter of Biomolecules in Metal–Organic Framework Micro/Nano Reactors. ACS Applied Materials & Interfaces, 2021, 13, 52215-52233.	4.0	12
113	Hybridization of Metal Nanoparticles with Metal–Organic Frameworks Using Protein as Amphiphilic Stabilizer. ACS Applied Materials & Interfaces, 2017, 9, 24649-24654.	4.0	11
114	Facile growth of a single-crystal pattern: a case study of HKUST-1. Chemical Communications, 2012, 48, 11901.	2.2	10
115	One stone kills four birds: a novel diazaperinone 12H-pyrazino[2′,3′:3,4]pyrrolo[1,2-a]perimidin-12-one recognizes four different metal ions. Tetrahedron Letters, 2012, 53, 6044-6047.	0.7	10
116	An in situ approach for facile fabrication of robust and scalable SERS substrates. Nanoscale, 2014, 6, 7232-7236.	2.8	10
117	The structural and catalytic properties of nanoparticles@MOF composites: A case study of Au@ZIF-8 hybrid crystals. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 56-60.	1.3	10
118	Phase transition of metal–organic frameworks for the encapsulation of enzymes. Journal of Materials Chemistry A, 2022, 10, 19881-19892.	5.2	10
119	Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls. Langmuir, 2015, 31, 5005-5013.	1.6	9
120	Spatial compartmentalization of metal nanoparticles within metal-organic frameworks for tandem reaction. Nano Research, 2022, 15, 1178-1182.	5.8	9
121	CNT@leather-based electronic bidirectional pressure sensor. Science China Technological Sciences, 2020, 63, 2137-2146.	2.0	8
122	Amorphous Chromium Oxide with Hollow Morphology for Nitrogen Electrochemical Reduction under Ambient Conditions. ACS Applied Materials & amp; Interfaces, 2022, 14, 14474-14481.	4.0	8
123	Mechanochemical Lithography. Journal of the American Chemical Society, 2022, 144, 9949-9958.	6.6	8
124	Multi-responsive luminescent coordination polymer nanosheets for selective detection of nitroaromatics. Chemical Communications, 2022, 58, 7809-7812.	2.2	8
125	Metal–Organic Frameworks as Metal Ion Precursors for the Synthesis of Nanocomposites for Lithiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 4793-4799.	1.6	7
126	Zeolitic imidazolate framework-8 templated synthesis of a heterogeneous Pd catalyst for remediation of chlorophenols pollution. Chemical Communications, 2020, 56, 3143-3146.	2.2	7

#	Article	IF	CITATIONS
127	Exploring the charge reactions in a Li–O ₂ system with lithium oxide cathodes and nonaqueous electrolytes. Journal of Materials Chemistry A, 2019, 7, 15615-15620.	5.2	6
128	High-resolution colorimetric detection of lipase activity based on enzyme-controlled reshaping of gold nanorods. Analytical Methods, 2019, 11, 2286-2291.	1.3	6
129	Anisotropic MOF-on-MOF Growth of Isostructural Multilayer Metal–Organic Framework Heterostructures. Research, 2021, 2021, 9854946.	2.8	6
130	A new breakthrough in selective catalysis: metal-organic framework nanocomposites with sandwich structure. Science Bulletin, 2016, 61, 1726-1727.	4.3	5
131	Crystalâ€Growthâ€Dominated Fabrication of Metal–Organic Frameworks with Orderly Distributed Hierarchical Porosity. Angewandte Chemie, 2020, 132, 2478-2485.	1.6	5
132	An <i>in situ</i> decorated cathode with LiF and F@C for performance enhanced Li–S batteries. Chemical Communications, 2020, 56, 6444-6447.	2.2	5
133	Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing. Chemical Research in Chinese Universities, 2021, 37, 846-854.	1.3	5
134	Photoactive Cascade Molecules: Polyether Dendrimers Bearing Spironaphthoxazine Groups on Their Peripheries. Macromolecular Chemistry and Physics, 2001, 202, 1618-1624.	1.1	3
135	Artificial Skin: Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors (Small) Tj ETQq1 1 0.7	784314 rg 5.2	BJ /Overla <mark>c</mark> l
136	Modifiers versus Channels: Creating Shapeâ€6elective Catalysis of Metal Nanoparticles/Porous Nanomaterials. Angewandte Chemie, 2021, 133, 989-995.	1.6	3
137	Construction of hierarchical-porous metal–organic frameworks through esterification reaction for efficient catalysis. Chemical Communications, 2021, 57, 10795-10798.	2.2	3
138	A leather-based electrolyte for all-in-one configured flexible supercapacitors. Chemical Communications, 2022, 58, 7070-7073.	2.2	1
139	Innenrücktitelbild: Multiâ€shelled Hollow Metal–Organic Frameworks (Angew. Chem. 20/2017). Angewandte Chemie, 2017, 129, 5723-5723.	1.6	0