Fabiana Arduini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1912026/publications.pdf

Version: 2024-02-01

31976 58581 7,867 150 53 82 citations h-index g-index papers 152 152 152 7038 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Smartphone-assisted electrochemical sensor for reliable detection of tyrosine in serum. Talanta, 2022, 237, 122869.	5.5	22
2	Paper-based immunoassay based on 96-well wax-printed paper plate combined with magnetic beads and colorimetric smartphone-assisted measure for reliable detection of SARS-CoV-2 in saliva. Biosensors and Bioelectronics, 2022, 200, 113909.	10.1	31
3	A fully-printed electrochemical platform for assisted colorimetric detection of phosphate in saliva: Greenness and whiteness quantification by the AGREE and RGB tools., 2022, 1, 100006.		9
4	A paper-based electrochemical device for the detection of pesticides in aerosol phase inspired by nature: A flower-like origami biosensor for precision agriculture. Biosensors and Bioelectronics, 2022, 205, 114119.	10.1	29
5	A Proof-of-Concept Electrochemical Cytosensor Based on Chlamydomonas reinhardtii Functionalized Carbon Black Screen-Printed Electrodes: Detection of Escherichia coli in Wastewater as a Case Study. Biosensors, 2022, 12, 401.	4.7	4
6	Carbon-black combined with TiO2 and KuQ as sustainable photosystem for a reliable self-powered photoelectrochemical biosensor. Electrochimica Acta, 2022, 426, 140766 .	5.2	6
7	Design and Manufacture of Flexible Epidermal NFC Device for Electrochemical Sensing of Sweat. , 2022, , .		8
8	Paper-based electrochemical sensor for on-site detection of the sulphur mustard. Environmental Science and Pollution Research, 2021, 28, 25069-25080.	5. 3	14
9	Medium-distance affordable, flexible and wireless epidermal sensor for pH monitoring in sweat. Talanta, 2021, 222, 121502.	5 . 5	67
10	Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosensors and Bioelectronics, 2021, 171, 112686.	10.1	331
11	Development of novel carbon black-based heterogeneous oligonucleotide-antibody assay for sulfur mustard detection. Sensors and Actuators B: Chemical, 2021, 328, 129054.	7.8	8
12	Facile development of cost effective and greener for all solid-state supercapacitor on paper substrate. Journal of Energy Storage, 2021, 33, 102107.	8.1	9
13	Nanomaterials and Cross-Cutting Technologies for Fostering Smart Electrochemical Biosensors in the Detection of Chemical Warfare Agents. Applied Sciences (Switzerland), 2021, 11, 720.	2.5	8
14	Electroanalytical Sensor Based on Gold-Nanoparticle-Decorated Paper for Sensitive Detection of Copper Ions in Sweat and Serum. Analytical Chemistry, 2021, 93, 5225-5233.	6.5	62
15	Chiral Biobased Ionic Liquids with Cations or Anions including Bile Acid Building Blocks as Chiral Selectors in Voltammetry. ChemElectroChem, 2021, 8, 1377-1387.	3.4	9
16	A dual electro-optical biosensor based on Chlamydomonas reinhardtii immobilised on paper-based nanomodified screen-printed electrodes for herbicide monitoring. Journal of Nanobiotechnology, 2021, 19, 145.	9.1	18
17	Natural-based chiral task-specific deep eutectic solvents: A novel, effective tool for enantiodiscrimination in electroanalysis. Electrochimica Acta, 2021, 380, 138189.	5 . 2	30
18	A paper-based electrochemical sensor for H2O2 detection in aerosol phase: Measure of H2O2 nebulized by a reconverted ultrasonic aroma diffuser as a case of study. Microchemical Journal, 2021, 166, 106249.	4.5	23

#	Article	IF	Citations
19	Paper-based electrochemical peptide sensor for on-site detection of botulinum neurotoxin serotype A and C. Biosensors and Bioelectronics, 2021, 183, 113210.	10.1	39
20	State of the Art on the SARS-CoV-2 Toolkit for Antigen Detection: One Year Later. Biosensors, 2021, 11, 310.	4.7	11
21	Modulating the Enantiodiscrimination Features of Inherently Chiral Selectors by Molecular Design: A HPLC and Voltammetry Study Case with Atropisomeric 2,2'â€Biindoleâ€Based Monomers and Oligomer Films. Chemistry - A European Journal, 2021, 27, 13190-13202.	3.3	8
22	Multi-array wax paper-based platform for the pre-concentration and determination of silver ions in drinking water. Talanta, 2021, 232, 122474.	5.5	14
23	Origami Paper-Based Electrochemical (Bio)Sensors: State of the Art and Perspective. Biosensors, 2021, 11, 328.	4.7	32
24	Multiparametric analysis by paper-assisted potentiometric sensors for diagnostic and monitoring of reinforced concrete structures. Sensors and Actuators B: Chemical, 2021, 345, 130352.	7.8	12
25	All-solid state ion-selective carbon black-modified printed electrode for sodium detection in sweat. Electrochimica Acta, 2021, 394, 139050.	5.2	29
26	Vertical-Flow Paper Sensor for On-Site and Prompt Evaluation of Chloride Contamination in Concrete Structures. Analytical Chemistry, 2021, 93, 14369-14374.	6.5	8
27	Paper-based devices as new smart analytical tools for sustainable detection of environmental pollutants. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100167.	6.1	10
28	Effects of Humidity, Temperature and Bismuth Electrodeposition on Electroanalytical Performances of Nafionâ€coated Printed Electrodes for Cd ²⁺ and Pb ²⁺ Detection. Electroanalysis, 2020, 32, 345-357.	2.9	10
29	Nanomaterial-based sensors. , 2020, , 329-359.		17
30	Experimental Comparison in Sensing Breast Cancer Mutations by Signal ON and Signal OFF Paper-Based Electroanalytical Strips. Analytical Chemistry, 2020, 92, 1674-1679.	6.5	43
31	A Miniaturized Carbon Blackâ€based Electrochemical Sensor for Chlorine Dioxide Detection in Swimming Pool Water. Electroanalysis, 2020, 32, 986-991.	2.9	11
32	A Poly(Propylene Imine) Dendrimer and Carbon Black Modified Flexible Screen Printed Electrochemical Sensor for Lead and Cadmium Coâ€detection. Electroanalysis, 2020, 32, 3009-3016.	2.9	8
33	A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Mikrochimica Acta, 2020, 187, 621.	5.0	57
34	Multi-potential biomarkers for seafood quality assessment: Global wide implication for human health monitoring. TrAC - Trends in Analytical Chemistry, 2020, 132, 116056.	11.4	11
35	Emerging technologies in the design of peptide nucleic acids (PNAs) based biosensors. TrAC - Trends in Analytical Chemistry, 2020, 132, 116062.	11.4	19
36	Well-Orientation Strategy for Direct Immobilization of Antibodies: Development of the Immunosensor Using the Boronic Acid-Modified Magnetic Graphene Nanoribbons for Ultrasensitive Detection of Lymphoma Cancer Cells. Analytical Chemistry, 2020, 92, 11405-11412.	6.5	48

#	Article	IF	Citations
37	A Paperâ€Based Potentiometric Sensor for Solid Samples: Corrosion Evaluation of Reinforcements Embedded in Concrete Structures as a Case Study. ChemElectroChem, 2020, 7, 2274-2282.	3.4	7
38	Multifarious aspects of electrochemical paper-based (bio)sensors. Comprehensive Analytical Chemistry, 2020, , 139-161.	1.3	3
39	A rapid screening method for testing the efficiency of masks in breaking down aerosols. Microchemical Journal, 2020, 157, 104928.	4.5	16
40	Flexible Polyester Screenâ€printed Electrode Modified with Carbon Nanofibers for the Electrochemical Aptasensing of Cadmium (II). Electroanalysis, 2020, 32, 2650-2658.	2.9	16
41	Paper-based electrochemical peptide nucleic acid (PNA) biosensor for detection of miRNA-492: a pancreatic ductal adenocarcinoma biomarker. Biosensors and Bioelectronics, 2020, 165, 112371.	10.1	75
42	Novel bio-lab-on-a-tip for electrochemical glucose sensing in commercial beverages. Biosensors and Bioelectronics, 2020, 165, 112334.	10.1	18
43	Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta, 2020, 216, 120924.	5.5	79
44	Precision medicine in Alzheimer's disease: An origami paper-based electrochemical device for cholinesterase inhibitors. Biosensors and Bioelectronics, 2020, 165, 112411.	10.1	60
45	Electrochemical determination of capsaicin in pepper samples using sustainable paper-based screen-printed bulk modified with carbon black. Electrochimica Acta, 2020, 354, 136628.	5.2	29
46	A challenge in biosensors: Is it better to measure a photon or an electron for ultrasensitive detection?. Biosensors and Bioelectronics, 2020, 155, 112093.	10.1	33
47	Green nanomaterials fostering agrifood sustainability. TrAC - Trends in Analytical Chemistry, 2020, 125, 115840.	11.4	62
48	Reusable optical multi-plate sensing system for pesticide detection by using electrospun membranes as smart support for acetylcholinesterase immobilisation. Materials Science and Engineering C, 2020, 111, 110744.	7.3	24
49	Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosensors and Bioelectronics, 2020, 156, 112033.	10.1	177
50	Carbon black nanoparticles to sense algae oxygen evolution for herbicides detection: Atrazine as a case study. Biosensors and Bioelectronics, 2020, 159, 112203.	10.1	30
51	Paper-Based Electrochemical Devices for the Pharmaceutical Field: State of the Art and Perspectives. Frontiers in Bioengineering and Biotechnology, 2020, 8, 339.	4.1	19
52	An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. Journal of the Iranian Chemical Society, 2020, 17, 2429-2447.	2.2	112
53	Nanobiosensors for Bioclinical Applications: Pros and Cons. Nanotechnology in the Life Sciences, 2020, , 117-149.	0.6	6
54	Electrospray deposition as a smart technique for laccase immobilisation on carbon black-nanomodified screen-printed electrodes. Biosensors and Bioelectronics, 2020, 163, 112299.	10.1	35

#	Article	IF	Citations
55	Sustainable materials for the design of forefront printed (bio)sensors applied in agrifood sector. TrAC - Trends in Analytical Chemistry, 2020, 128, 115909.	11.4	25
56	Effect of Different Carbon Blacks on the Simultaneous Electroanalysis of Drugs as Water Contaminants Based on Screenâ€printed Sensors. Electroanalysis, 2019, 31, 2145-2154.	2.9	27
57	Preparation of paper-based devices for reagentless electrochemical (bio)sensor strips. Nature Protocols, 2019, 14, 2437-2451.	12.0	114
58	The technology tree in the design of glucose biosensors. TrAC - Trends in Analytical Chemistry, 2019, 120, 115642.	11.4	38
59	A novel sensing layer based on metal–organic framework UiO-66 modified with TiO ₂ –graphene oxide: application to rapid, sensitive and simultaneous determination of paraoxon and chlorpyrifos. New Journal of Chemistry, 2019, 43, 2600-2609.	2.8	70
60	Colorimetric immunosensor for determination of prostate specific antigen using surface plasmon resonance band of colloidal triangular shape gold nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117218.	3.9	35
61	Inside the different types of carbon black as nanomodifiers for screen-printed electrodes. Electrochimica Acta, 2019, 317, 673-683.	5.2	70
62	Reduced graphene oxide decorated on Cu/CuO-Ag nanocomposite as a high-performance material for the construction of a non-enzymatic sensor: Application to the determination of carbaryl and fenamiphos pesticides. Materials Science and Engineering C, 2019, 102, 764-772.	7.3	66
63	Dual-modality impedimetric immunosensor for early detection of prostate-specific antigen and myoglobin markers based on antibody-molecularly imprinted polymer. Talanta, 2019, 202, 111-122.	5.5	106
64	A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. Biosensors and Bioelectronics, 2019, 134, 97-102.	10.1	21
65	An eco-designed paper-based algal biosensor for nanoformulated herbicide optical detection. Journal of Hazardous Materials, 2019, 373, 483-492.	12.4	45
66	Paper-based electroanalytical strip for user-friendly blood glutathione detection. Sensors and Actuators B: Chemical, 2019, 294, 291-297.	7.8	39
67	Screen-printed electrode as a cost-effective and miniaturized analytical tool for corrosion monitoring of reinforced concrete. Electrochemistry Communications, 2019, 98, 69-72.	4.7	21
68	A label-free impedimetric aptasensor for the detection of Bacillus anthracis spore simulant. Biosensors and Bioelectronics, 2019, 126, 640-646.	10.1	55
69	A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosensors and Bioelectronics, 2019, 129, 15-23.	10.1	103
70	Treated Gold Screen-Printed Electrode as Disposable Platform for Label-Free Immunosensing of Salmonella Typhimurium. Electrocatalysis, 2019, 10, 288-294.	3.0	8
71	Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosensors and Bioelectronics, 2019, 126, 346-354.	10.1	227
72	Testing and Characterization of Different Papers as Substrate Material for Printed Electronics and Application in Humidity Sensor. Sensors and Materials, 2019, 31, 2981.	0.5	11

#	Article	IF	CITATIONS
73	Electroanalysis moves towards paper-based printed electronics: carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study. Sensors and Actuators B: Chemical, 2018, 265, 155-160.	7.8	66
74	Paper-based synthesis of Prussian Blue Nanoparticles for the development of whole blood glucose electrochemical biosensor. Talanta, 2018, 187, 59-64.	5.5	79
75	A lab-on-a-tip approach to make electroanalysis user-friendly and de-centralized: Detection of copper ions in river water. Analytica Chimica Acta, 2018, 1029, 1-7.	5.4	28
76	Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta, 2018, 179, 186-192.	5.5	83
77	A reagent-free paper-based sensor embedded in a 3D printing device for cholinesterase activity measurement in serum. Sensors and Actuators B: Chemical, 2018, 258, 1015-1021.	7.8	67
78	A whole cell optical bioassay for the detection of chemical warfare mustard agent simulants. Sensors and Actuators B: Chemical, 2018, 257, 658-665.	7.8	14
79	Nanostructured (Bio)sensors for smart agriculture. TrAC - Trends in Analytical Chemistry, 2018, 98, 95-103.	11.4	115
80	Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. Analytical Chemistry, 2018, 90, 13680-13686.	6.5	64
81	How to extend range linearity in enzyme inhibition-based biosensing assays. Talanta, 2018, 189, 365-369.	5.5	3
82	Carbon black-based disposable sensor for an on-site detection of free chlorine in swimming pool water. Talanta, 2018, 189, 262-267.	5.5	29
83	Influence of Iron Catalyst in the Carbon Spheres Synthesis for Energy and Electrochemical Applications. Advanced Materials Interfaces, 2018, 5, 1800070.	3.7	8
84	Chemical Vapor Deposition: Influence of Iron Catalyst in the Carbon Spheres Synthesis for Energy and Electrochemical Applications (Adv. Mater. Interfaces 16/2018). Advanced Materials Interfaces, 2018, 5, 1870080.	3.7	0
85	Protein templated Au-Pt nanoclusters-graphene nanoribbons as a high performance sensing layer for the electrochemical determination of diazinon. Sensors and Actuators B: Chemical, 2018, 275, 180-189.	7.8	60
86	Label-free electrochemical sensor based on spore-imprinted polymer for Bacillus cereus spore detection. Sensors and Actuators B: Chemical, 2018, 276, 114-120.	7.8	58
87	Efforts, Challenges, and Future Perspectives of Graphene-Based (Bio)sensors for Biomedical Applications. , 2018, , 133-150.		5
88	Magnetic carbon spheres and their derivatives combined with printed electrochemical sensors. Electrochimica Acta, 2018, 282, 247-254.	5.2	7
89	Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms. Biosensors and Bioelectronics, 2017, 89, 107-122.	10.1	173
90	A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Analytica Chimica Acta, 2017, 960, 123-130.	5.4	151

#	Article	IF	Citations
91	A miniaturized bismuth-based sensor to evaluate the marine organism Styela plicata bioremediation capacity toward heavy metal polluted seawater. Science of the Total Environment, 2017, 584-585, 692-700.	8.0	17
92	How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Analytica Chimica Acta, 2017, 959, 15-42.	5.4	133
93	Sustainable monitoring of $Zn(II)$ in biological fluids using office paper. Sensors and Actuators B: Chemical, 2017, 253, 1199-1206.	7.8	37
94	Screen-printed electrodes as versatile electrochemical sensors and biosensors. , 2017, , .		1
95	Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosensors and Bioelectronics, 2017, 93, 46-51.	10.1	129
96	Organophosphorous Pesticide Detection in Olive Oil by Using a Miniaturized, Easy-to-Use, and Cost-Effective Biosensor Combined with QuEChERS for Sample Clean-Up. Sensors, 2017, 17, 34.	3.8	12
97	Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®. Sensors, 2017, 17, 2267.	3.8	52
98	Paper-Based Electrochemical Devices in Biomedical Field. Comprehensive Analytical Chemistry, 2017, 77, 385-413.	1.3	25
99	Electrochemical Characterization of Carbon Solidlike Paste Electrode Assembled Using Different Carbon Nanoparticles. Electroanalysis, 2016, 28, 1044-1051.	2.9	19
100	Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Mikrochimica Acta, 2016, 183, 2063-2083.	5.0	155
101	Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development. Analytical and Bioanalytical Chemistry, 2016, 408, 7299-7309.	3.7	38
102	Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate. Analytica Chimica Acta, 2016, 919, 78-84.	5.4	156
103	Hg2+ detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles. Environmental Science and Pollution Research, 2016, 23, 8192-8199.	5.3	60
104	Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC - Trends in Analytical Chemistry, 2016, 79, 114-126.	11.4	303
105	Rapid and label-free detection of ochratoxin A and aflatoxin B1 using an optical portable instrument. Talanta, 2016, 150, 440-448.	5.5	26
106	Electrochemical Biosensors for Chemical Warfare Agents. Advanced Sciences and Technologies for Security Applications, 2016, , 115-139.	0.5	6
107	Rapid electrochemical screening methods for food safety and quality. Acta IMEKO (2012), 2016, 5, 45.	0.7	1
108	Screenâ€Printed Electrodes Modified with Carbon Nanomaterials: A Comparison among Carbon Black, Carbon Nanotubes and Graphene. Electroanalysis, 2015, 27, 2230-2238.	2.9	112

#	Article	IF	Citations
109	Automatable Flow System for Paraoxon Detection with an Embedded Screen-Printed Electrode Tailored with Butyrylcholinesterase and Prussian Blue Nanoparticles. Chemosensors, 2015, 3, 129-145.	3.6	25
110	Development of an Electrochemical Sensor for NADH Determination Based on a Caffeic Acid Redox Mediator Supported on Carbon Black. Chemosensors, 2015, 3, 118-128.	3.6	29
111	Phosphate Detection through a Cost-Effective Carbon Black Nanoparticle-Modified Screen-Printed Electrode Embedded in a Continuous Flow System. Environmental Science & Education (2015), 49, 7934-7939.	10.0	92
112	A Choline Oxidase Amperometric Bioassay for the Detection of Mustard Agents Based on Screen-Printed Electrodes Modified with Prussian Blue Nanoparticles. Sensors, 2015, 15, 4353-4367.	3.8	13
113	Cholesterol biosensor based on inkjet-printed Prussian blue nanoparticle-modified screen-printed electrodes. Sensors and Actuators B: Chemical, 2015, 221, 187-190.	7.8	55
114	Screen-printed electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex. Talanta, 2015, 141, 267-272.	5.5	87
115	Carbon black as successful screen-printed electrode modifier for phenolic compound detection. Electrochemistry Communications, 2015, 60, 78-82.	4.7	95
116	Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Mikrochimica Acta, 2015, 182, 643-651.	5.0	88
117	Carbon Black/Gold Nanoparticles Composite for Efficient Amperometric Sensors. Lecture Notes in Electrical Engineering, 2015, , 159-163.	0.4	2
118	Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles. Sensors, 2014, 14, 14222-14234.	3.8	80
119	Stripping Analysis of As(III) by Means of Screenâ€Printed Electrodes Modified with Gold Nanoparticles and Carbon Black Nanocomposite. Electroanalysis, 2014, 26, 931-939.	2.9	76
120	Analytical aspects of enzyme reversible inhibition. Talanta, 2014, 118, 368-374.	5.5	32
121	Disposable Electrochemical Sensor to Evaluate the Phytoremediation of the Aquatic Plant <i>Lemna minor</i> L. toward Pb ²⁺ and/or Cd ²⁺ . Environmental Science & Environmental Sci	10.0	31
122	Carbon black assisted tailoring of Prussian Blue nanoparticles to tune sensitivity and detection limit towards H 2 O 2 by using screen-printed electrode. Electrochemistry Communications, 2014, 47, 63-66.	4.7	53
123	Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors and Actuators B: Chemical, 2013, 179, 201-208.	7.8	110
124	Biosensors Based on Enzyme Inhibition. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 299-326.	1.1	13
125	Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals. Analytica Chimica Acta, 2012, 751, 161-170.	5.4	36
126	Part two: Analytical optimisation of a procedure for lead detection in milk by means of bismuth-modified screen-printed electrodes. Analytica Chimica Acta, 2012, 736, 92-99.	5.4	36

#	Article	IF	Citations
127	Direct Electrochemistry of Heme Proteins on Electrodes Modified with Didodecyldimethyl Ammonium Bromide and Carbon Black. Electroanalysis, 2012, 24, 1923-1931.	2.9	40
128	Disposable Electrochemical Biosensor Based on Cholinesterase Inhibition with Improved Shelf-Life and Working Stability for Nerve Agent Detection. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 261-278.	0.5	8
129	Carbon Blackâ€Modified Screenâ€Printed Electrodes as Electroanalytical Tools. Electroanalysis, 2012, 24, 743-751.	2.9	111
130	Towards a Portable Prototype Based on Electrochemical Cholinesterase Biosensor to be Assembled to Soldier Overall for Nerve Agent Detection. Electroanalysis, 2012, 24, 581-590.	2.9	23
131	Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection. Analytica Chimica Acta, 2011, 707, 171-177.	5 . 4	46
132	Realâ€Time Monitoring of Hydrogen Peroxide Consumption in an Oxidation Reaction in Molecular Solvent and Ionic Liquids by a Hydrogen Peroxide Electrochemical Sensor. ChemSusChem, 2011, 4, 792-796.	6.8	4
133	Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film. Electrochimica Acta, 2011, 56, 4209-4215.	5.2	93
134	A Rapid Enzymatic Method for Aflatoxin B Detection. Methods in Molecular Biology, 2011, 739, 217-235.	0.9	12
135	Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Mikrochimica Acta, 2010, 170, 193-214.	5.0	140
136	High performance electrochemical sensor based on modified screen-printed electrodes with cost-effective dispersion of nanostructured carbon black. Electrochemistry Communications, 2010, 12, 346-350.	4.7	111
137	Bismuth-modified electrodes for lead detection. TrAC - Trends in Analytical Chemistry, 2010, 29, 1295-1304.	11.4	141
138	Electroanalytical Characterization of Carbon Black Nanomaterial Paste Electrode: Development of Highly Sensitive Tyrosinase Biosensor for Catechol Detection. Analytical Letters, 2010, 43, 1688-1702.	1.8	64
139	Development of a bio-electrochemical assay for AFB1 detection in olive oil. Biosensors and Bioelectronics, 2009, 24, 1962-1968.	10.1	89
140	Electrocatalytic oxidation of thiocholine at chemically modified cobalt hexacyanoferrate screen-printed electrodes. Journal of Electroanalytical Chemistry, 2009, 626, 66-74.	3.8	59
141	Reversible Enzyme Inhibition–Based Biosensors: Applications and Analytical Improvement Through Diagnostic Inhibition. Analytical Letters, 2009, 42, 1258-1293.	1.8	40
142	Enzymatic Spectrophotometric Method for Aflatoxin B Detection Based on Acetylcholinesterase Inhibition. Analytical Chemistry, 2007, 79, 3409-3415.	6.5	80
143	The NADH Electrochemical Detection Performed at Carbon Nanofibers Modified Glassy Carbon Electrode. Electroanalysis, 2007, 19, 1455-1459.	2.9	53
144	Amperometric biosensor based on Prussian Blue-modified screen-printed electrode for lipase activity and triacylglycerol determination. Analytica Chimica Acta, 2007, 594, 1-8.	5.4	47

#	Article	IF	CITATIONS
145	Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Analytical and Bioanalytical Chemistry, 2007, 388, 1049-1057.	3.7	87
146	Glutathione amperometric detection based on a thiol–disulfide exchange reaction. Analytica Chimica Acta, 2006, 558, 164-170.	5.4	43
147	Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Analytica Chimica Acta, 2006, 580, 155-162.	5.4	226
148	Extraction and Detection of Pesticides by Cholinesterase Inhibition in a Twoâ€Phase System: a Strategy to Avoid Heavy Metal Interference. Analytical Letters, 2005, 38, 1703-1719.	1.8	41
149	Characterisation of Prussian blue modified screen-printed electrodes for thiol detection. Journal of Electroanalytical Chemistry, 2004, 563, 229-237.	3.8	102
150	Liquid Biopsy beyond Cancer: A miRNA Detection in Serum with Electrochemical Chip for Nonâ€invasive Coeliac Disease Diagnosis. Advanced NanoBiomed Research, 0, , 2200015.	3.6	0