Svetlana Prudnikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1911847/publications.pdf

Version: 2024-02-01

27 papers 1,066 citations

16 h-index 27 g-index

29 all docs

29 docs citations

29 times ranked 1219 citing authors

#	Article	IF	CITATIONS
1	Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polymer Degradation and Stability, 2010, 95, 2350-2359.	5.8	195
2	Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environmental Toxicology and Pharmacology, 2017, 53, 10-17.	4.0	154
3	Microbial degradation of polyhydroxyalkanoates in tropical soils. International Biodeterioration and Biodegradation, 2013, 83, 77-84.	3.9	148
4	Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their Biodegradability. Microbial Ecology, 2017, 73, 353-367.	2.8	87
5	Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Applied Microbiology and Biotechnology, 2018, 102, 7417-7428.	3.6	64
6	Biodegradation of polyhydroxyalkanoates by soil microbial communities of different structures and detection of PHA degrading microorganisms. Applied Biochemistry and Microbiology, 2012, 48, 28-36.	0.9	63
7	Biodegradation of polyhydroxyalkanoates (PHAs) in the South China Sea and identification of PHA-degrading bacteria. Microbiology, 2011, 80, 252-260.	1.2	46
8	Degradable Polyhydroxyalkanoates as Herbicide Carriers. Journal of Polymers and the Environment, 2013, 21, 675-682.	5.0	38
9	Biodegradable poly-3-hydroxybutyrate as a fertiliser carrier. Journal of the Science of Food and Agriculture, 2016, 96, 4183-4193.	3.5	33
10	Biodegradation of Polyhydroxyalkanoate Films in Natural Environments. Macromolecular Symposia, 2012, 320, 38-42.	0.7	24
11	Constructing Slow-Release Fungicide Formulations Based on Poly(3-hydroxybutyrate) and Natural Materials as a Degradable Matrix. Journal of Agricultural and Food Chemistry, 2019, 67, 9220-9231.	5.2	24
12	Toxic effects of the fungicide tebuconazole on the root system of fusarium-infected wheat plants. Plant Physiology and Biochemistry, 2018, 132, 400-407.	5.8	22
13	Characterization of biodegradable poly-3-hydroxybutyrate films and pellets loaded with the fungicide tebuconazole. Environmental Science and Pollution Research, 2016, 23, 5243-5254.	5.3	19
14	Efficacy of tebuconazole embedded in biodegradable polyâ€3â€hydroxybutyrate to inhibit the development of <i>Fusarium moniliforme</i> in soil microecosystems. Pest Management Science, 2017, 73, 925-935.	3.4	18
15	Constructing sustainedâ€release herbicide formulations based on polyâ€3â€hydroxybutyrate and natural materials as a degradable matrix. Pest Management Science, 2020, 76, 1772-1785.	3.4	18
16	Poly(3-hydroxybutyrate)/metribuzin formulations: characterization, controlled release properties, herbicidal activity, and effect on soil microorganisms. Environmental Science and Pollution Research, 2016, 23, 23936-23950.	5.3	17
17	Fungicidal activity of slow-release P(3HB)/TEB formulations in wheat plant communities infected by Fusarium moniliforme. Environmental Science and Pollution Research, 2018, 25, 552-561.	5.3	17
18	The effect of the pesticide delivery method on the microbial community of field soil. Environmental Science and Pollution Research, 2021, 28, 8681-8697.	5. 3	17

#	Article	IF	Citations
19	Development and characterization of ceftriaxone-loaded P3HB-based microparticles for drug delivery. Drying Technology, 2019, 37, 1131-1142.	3.1	14
20	Bio-functionalization of phytogenic Ag and ZnO nanobactericides onto cellulose films for bactericidal activity against multiple drug resistant pathogens. Journal of Microbiological Methods, 2019, 159, 42-50.	1.6	13
21	Bio-hybridization of nanobactericides with cellulose films for effective treatment against members of ESKAPE multi-drug-resistant pathogens. Applied Nanoscience (Switzerland), 2018, 8, 1101-1110.	3.1	11
22	Phytogenic Nanoparticles to Combat Multi Drug Resistant Pathogens and Photocatalytic Degradation of Dyes. BioNanoScience, 2020, 10, 486-492.	3.5	8
23	Specific character of bacterial biodegradation of polyhydroxyalkanoates with different chemical structure in soil. Doklady Biochemistry and Biophysics, 2017, 473, 94-97.	0.9	7
24	Siberian plants: untapped repertoire of bioactive endosymbionts. Frontiers in Biology, 2018, 13, 157-167.	0.7	2
25	Phytogenic Synthesis of Ag Bionano-Antibiotics Against ESKAPE Drug Resistant Communities in Krasnoyarsk, Siberia. Journal of Cluster Science, 2019, 30, 589-597.	3.3	2
26	Natural Degradable Polyhydroxyalkanoates as the Basis for Creation of Prolonged and Targeted Pesticides to Protect Cultivated Plants from Weeds and Pathogens. , 2020, , 1-22.		2
27	POTENTIAL APPLICATION OF BIODEGRADABLE POLYMER " $\rlap/\imath_2\rlap/\imath_2$ POLY(3-HYDROXYBUTYRATE) " $\rlap/\imath_2\rlap/\imath_2$ IN DESIGNING OGENERATION FORMULATIONS OF AGROCHEMICALS. , 2018, , .	F NEW	0