Guangming Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/191148/publications.pdf

Version: 2024-02-01

43973 62479 7,761 145 48 80 citations h-index g-index papers 146 146 146 5916 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhancing cultivation of biodiesel-promising microalgae Chlorella pyrenoidosa using plant hormones in municipal wastewater. Biomass Conversion and Biorefinery, 2023, 13, 9753-9763.	2.9	8
2	Enhancing integrated denitrifying anaerobic methane oxidation and Anammox processes for nitrogen and methane removal: A review. Critical Reviews in Environmental Science and Technology, 2023, 53, 390-415.	6.6	9
3	SARS-CoV-2 and other pathogens in municipal wastewater, landfill leachate, and solid waste: A review about virus surveillance, infectivity, and inactivation. Environmental Research, 2022, 203, 111839.	3.7	75
4	Analytical performance comparison of four SARS-CoV-2 RT-qPCR primer-probe sets for wastewater samples. Science of the Total Environment, 2022, 806, 150572.	3.9	10
5	Corrosion mitigation by nitrite spray on corroded concrete in a real sewer system. Science of the Total Environment, 2022, 806, 151328.	3.9	10
6	Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter. Chemosphere, 2022, 291, 132723.	4.2	10
7	Decay of four enteric pathogens and implications to wastewater-based epidemiology: Effects of temperature and wastewater dilutions. Science of the Total Environment, 2022, 819, 152000.	3.9	17
8	Enhanced decay of coronaviruses in sewers with domestic wastewater. Science of the Total Environment, 2022, 813, 151919.	3.9	27
9	Dissecting the Chain Length Effect on Separation of Alkane-in-Water Emulsions with Superwetting Microchannels. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6157-6166.	4.0	6
10	Successful application of wastewater-based epidemiology in prediction and monitoring of the second wave of COVID-19 with fragmented sewerage systems–a case study of Jaipur (India). Environmental Monitoring and Assessment, 2022, 194, 342.	1.3	11
11	Effect of microwave on biomass growth and oxygen production of microalgae Chlorella pyrenoidosa cultured in real wastewater. Chemical Engineering Research and Design, 2022, 161, 22-33.	2.7	11
12	SARS-CoV-2 shedding sources in wastewater and implications for wastewater-based epidemiology. Journal of Hazardous Materials, 2022, 432, 128667.	6.5	34
13	Lead time of early warning by wastewater surveillance for COVID-19: Geographical variations and impacting factors. Chemical Engineering Journal, 2022, 441, 135936.	6.6	40
14	Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. Water Research, 2022, 218, 118451.	5.3	52
15	Insights into the Role of Na ⁺ on the Transformation of Gypsum into α-Hemihydrate Whiskers in Alcohol–Water Systems. ACS Omega, 2022, 7, 15570-15579.	1.6	6
16	Application of digital PCR for public health-related water quality monitoring. Science of the Total Environment, 2022, 837, 155663.	3.9	36
17	Enhancing harvest of biodiesel-promising microalgae using Daphnia domesticated by amino acids. Environmental Research, 2022, 212, 113465.	3.7	3
18	Back-estimation of norovirus infections through wastewater-based epidemiology: A systematic review and parameter sensitivity. Water Research, 2022, 219, 118610.	5.3	25

#	Article	IF	Citations
19	Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa. Water Research, 2022, 220, 118634.	5.3	45
20	Defective Layered Double Hydroxide Nanosheet Boosts Electrocatalytic Hydrodechlorination Reaction on Supported Palladium Nanoparticles. ACS ES&T Water, 2022, 2, 1451-1460.	2.3	17
21	Vertical outbreak of COVID-19 in high-rise buildings: The role of sewer stacks and prevention measures. Current Opinion in Environmental Science and Health, 2022, 29, 100379.	2.1	6
22	Physiological suitability of sulfateâ€reducing granules for the development of bioconcrete. Biotechnology and Bioengineering, 2022, 119, 2743-2756.	1.7	3
23	Predicting the concentrations of enteric viruses in urban rivers running through the city center via an artificial neural network. Journal of Hazardous Materials, 2022, 438, 129506.	6.5	3
24	Transformation of phthalates and their metabolites in wastewater under different sewer conditions. Water Research, 2021, 190, 116754.	5.3	14
25	Dual-site electrocatalytic nitrate reduction to ammonia on oxygen vacancy-enriched and Pd-decorated MnO ₂ nanosheets. Nanoscale, 2021, 13, 17504-17511.	2.8	27
26	Surface Ligand Environment Boosts the Electrocatalytic Hydrodechlorination Reaction on Palladium Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4072-4083.	4.0	38
27	Effect of on-Site Sludge Reduction and Wastewater Treatment Based on Electrochemical-A/O Combined Process. Water (Switzerland), 2021, 13, 941.	1.2	4
28	Reduction of excess sludge production by membrane bioreactor coupled with anoxic side-stream reactors. Journal of Environmental Management, 2021, 281, 111919.	3.8	19
29	Co-digestion of primary sewage sludge with drinking water treatment sludge: A comprehensive evaluation of benefits. Bioresource Technology, 2021, 330, 124994.	4.8	10
30	Optimizing the metal-support interactions at the Pd-polymer carbon nitride Mott-Schottky heterojunction interface for an enhanced electrocatalytic hydrodechlorination reaction. Journal of Hazardous Materials, 2021, 411, 125119.	6.5	27
31	Effects of pH, Temperature, Suspended Solids, and Biological Activity on Transformation of Illicit Drug and Pharmaceutical Biomarkers in Sewers. Environmental Science & Enp; Technology, 2021, 55, 8771-8782.	4.6	26
32	Uncertainties in estimating SARS-CoV-2 prevalence by wastewater-based epidemiology. Chemical Engineering Journal, 2021, 415, 129039.	6.6	133
33	Biotrickling filter for the removal of volatile sulfur compounds from sewers: A review. Chemosphere, 2021, 277, 130333.	4.2	26
34	Self-healing bioconcrete based on non-axenic granules: A potential solution for concrete wastewater infrastructure. Journal of Water Process Engineering, 2021, 42, 102139.	2.6	23
35	A novel granular sludge-based and highly corrosion-resistant bio-concrete in sewers. Science of the Total Environment, 2021, 791, 148270.	3.9	27
36	Data-driven estimation of COVID-19 community prevalence through wastewater-based epidemiology. Science of the Total Environment, 2021, 789, 147947.	3.9	54

#	Article	IF	CITATIONS
37	Synergistic effect on concrete corrosion control in sewer environment achieved by applying surface washing on calcium nitrite admixed concrete. Construction and Building Materials, 2021, 302, 124184.	3.2	11
38	Molecular Methods for Pathogenic Bacteria Detection and Recent Advances in Wastewater Analysis. Water (Switzerland), 2021, 13, 3551.	1.2	18
39	Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chemical Engineering Journal, 2020, 379, 122282.	6.6	260
40	Pd-TiO2 Schottky heterojunction catalyst boost the electrocatalytic hydrodechlorination reaction. Chemical Engineering Journal, 2020, 381, 122673.	6.6	75
41	Nitrite admixed concrete for wastewater structures: Mechanical properties, leaching behavior and biofilm development. Construction and Building Materials, 2020, 233, 117341.	3.2	27
42	Strong pyrrolic-N–Pd interactions boost the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. Nanoscale, 2020, 12, 843-850.	2.8	25
43	Considerations for assessing stability of wastewater-based epidemiology biomarkers using biofilm-free and sewer reactor tests. Science of the Total Environment, 2020, 709, 136228.	3.9	42
44	Effects of in-sewer dosing of iron-rich drinking water sludge on wastewater collection and treatment systems. Water Research, 2020, 171, 115396.	5.3	40
45	Improving wastewater management using free nitrous acid (FNA). Water Research, 2020, 171, 115382.	5.3	111
46	Activating palladium nanoparticles via a Mott-Schottky heterojunction in electrocatalytic hydrodechlorination reaction. Journal of Hazardous Materials, 2020, 389, 121876.	6.5	39
47	Enhanced anaerobic digestion of primary sludge with additives: Performance and mechanisms. Bioresource Technology, 2020, 316, 123970.	4.8	40
48	Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. Journal of Travel Medicine, 2020, 27, .	1.4	146
49	Synergistic inhibitory effects of free nitrous acid and imidazoline derivative on metal corrosion in a simulated water injection system. Water Research, 2020, 184, 116122.	5.3	18
50	Transformation of Illicit Drugs and Pharmaceuticals in Sewer Sediments. Environmental Science & Environmental	4.6	22
51	Assessing the removal of organic micropollutants from wastewater by discharging drinking water sludge to sewers. Water Research, 2020, 181, 115945.	5.3	22
52	Full-scale investigation of ferrous dosing in sewers and a wastewater treatment plant for multiple benefits. Chemosphere, 2020, 250, 126221.	4.2	30
53	Decreasing microbially influenced metal corrosion using free nitrous acid in a simulated water injection system. Water Research, 2020, 172, 115470.	5.3	17
54	Increased Resistance of Nitrite-Admixed Concrete to Microbially Induced Corrosion in Real Sewers. Environmental Science & Envi	4.6	33

#	Article	IF	CITATIONS
55	Effects of dosing iron- and alum-containing waterworks sludge on sulfide and phosphate removal in a pilot sewer. Chemical Engineering Journal, 2020, 387, 124073.	6.6	28
56	Rebar corrosion and its interaction with concrete degradation in reinforced concrete sewers. Water Research, 2020, 182, 115961.	5.3	25
57	Opportunities for reducing coagulants usage in urban water management: The Oxley Creek Sewage Collection and Treatment System as an example. Water Research, 2019, 165, 114996.	5.3	17
58	Identifying the rate-determining step of the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. Nanoscale, 2019, 11, 15892-15899.	2.8	34
59	Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles: The critical role of hydroxyl group deprotonation. Applied Catalysis A: General, 2019, 583, 117146.	2.2	29
60	Controlling the secondary pollutant on B-doped g-C ₃ N ₄ during photocatalytic NO removal: a combined DRIFTS and DFT investigation. Catalysis Science and Technology, 2019, 9, 4531-4537.	2.1	20
61	Bimetallic Composition-Promoted Electrocatalytic Hydrodechlorination Reaction on Silver–Palladium Alloy Nanoparticles. ACS Catalysis, 2019, 9, 10803-10811.	5.5	115
62	Evaluating the stability of three oxidative stress biomarkers under sewer conditions and potential impact for use in wastewater-based epidemiology. Water Research, 2019, 166, 115068.	5.3	35
63	The rapid chemically induced corrosion of concrete sewers at high H2S concentration. Water Research, 2019, 162, 95-104.	5.3	55
64	Removal of Pharmaceuticals and Illicit Drugs from Wastewater Due to Ferric Dosing in Sewers. Environmental Science & Environme	4.6	27
65	Nanoscale zero valent iron supported on MgAl-LDH-decorated reduced graphene oxide: Enhanced performance in Cr(VI) removal, mechanism and regeneration. Journal of Hazardous Materials, 2019, 373, 176-186.	6.5	71
66	Sweating the assets \hat{a} The role of instrumentation, control and automation in urban water systems. Water Research, 2019, 155, 381-402.	5.3	76
67	Experimental Investigation and Modeling of the Transformation of Illicit Drugs in a Pilot-Scale Sewer System. Environmental Science & Environmental Sc	4.6	25
68	Periodic deprivation of gaseous hydrogen sulfide affects the activity of the concrete corrosion layer in sewers. Water Research, 2019, 157, 463-471.	5.3	12
69	Development of microbially influenced corrosion on carbon steel in a simulated water injection system. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1826-1836.	0.8	7
70	Evaluating the in-sewer stability of three potential population biomarkers for application in wastewater-based epidemiology. Science of the Total Environment, 2019, 671, 248-253.	3.9	32
71	Corrosion of reinforcing steel in concrete sewers. Science of the Total Environment, 2019, 649, 739-748.	3.9	35
72	A National Wastewater Monitoring Program for a better understanding of public health: A case study using the Australian Census. Environment International, 2019, 122, 400-411.	4.8	59

#	Article	IF	Citations
73	Real-time prediction of rain-impacted sewage flow for on-line control of chemical dosing in sewers. Water Research, 2019, 149, 311-321.	5.3	28
74	Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion. Journal of Environmental Management, 2019, 234, 431-439.	3.8	47
75	MgAl layered double oxide: One powerful sweeper of emulsified water and acid for oil purification. Journal of Hazardous Materials, 2019, 367, 658-667.	6.5	28
76	Systematic evaluation of biomarker stability in pilot scale sewer pipes. Water Research, 2019, 151, 447-455.	5.3	43
77	Distinct microbially induced concrete corrosion at the tidal region of reinforced concrete sewers. Water Research, 2019, 150, 392-402.	5.3	43
78	Sodium Acetate Trihydrate–Crystallization Inhibitor System for Seasonal Latent Heat Storage. Journal of Energy Engineering - ASCE, 2018, 144, .	1.0	5
79	Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing. Water Research, 2018, 135, 302-310.	5.3	35
80	Unraveling the Mechanisms of Visible Light Photocatalytic NO Purification on Earth-Abundant Insulator-Based Core–Shell Heterojunctions. Environmental Science & Eamp; Technology, 2018, 52, 1479-1487.	4.6	192
81	Stability of Illicit Drugs as Biomarkers in Sewers: From Lab to Reality. Environmental Science & Science & Technology, 2018, 52, 1561-1570.	4.6	50
82	Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution. Chemical Engineering Journal, 2018, 348, 26-34.	6.6	104
83	Stability of alcohol and tobacco consumption biomarkers in a real rising main sewer. Water Research, 2018, 138, 19-26.	5.3	64
84	Potential impact of the sewer system on the applicability of alcohol and tobacco biomarkers in wastewaterâ€based epidemiology. Drug Testing and Analysis, 2018, 10, 530-538.	1.6	63
85	Sodium Cation-Mediated Crystallization of α-Hemihydrate Whiskers from Gypsum in Ethylene Glycol–Water Solutions. Crystal Growth and Design, 2018, 18, 6694-6701.	1.4	16
86	The Spatially Oriented Charge Flow and Photocatalysis Mechanism on Internal van der Waals Heterostructures Enhanced g-C ₃ N ₄ . ACS Catalysis, 2018, 8, 8376-8385.	5.5	219
87	Population histamine burden assessed using wastewater-based epidemiology: The association of 1,4‑methylimidazole acetic acid and fexofenadine. Environment International, 2018, 120, 172-180.	4.8	38
88	Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning. Applied Catalysis B: Environmental, 2018, 239, 187-195.	10.8	145
89	Impact of in-Sewer Degradation of Pharmaceutical and Personal Care Products (PPCPs) Population Markers on a Population Model. Environmental Science & Eamp; Technology, 2017, 51, 3816-3823.	4.6	96
90	In situ DRIFT investigation on the photocatalytic NO oxidation mechanism with thermally exfoliated porous g-C ₃ N ₄ nanosheets. RSC Advances, 2017, 7, 19280-19287.	1.7	23

#	Article	IF	Citations
91	Identification of Active Hydrogen Species on Palladium Nanoparticles for an Enhanced Electrocatalytic Hydrodechlorination of 2,4-Dichlorophenol in Water. Environmental Science & Samp; Technology, 2017, 51, 7599-7605.	4.6	249
92	Comparison of microbial communities across sections of a corroding sewer pipe and the effects of wastewater flooding. Biofouling, 2017, 33, 780-792.	0.8	24
93	Odor emissions from domestic wastewater: A review. Critical Reviews in Environmental Science and Technology, 2017, 47, 1581-1611.	6.6	83
94	Calcium Sulfate Hemihydrate Nanowires: One Robust Material in Separation of Water from Water-in-Oil Emulsion. Environmental Science & Environmental Sc	4.6	37
95	Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Scientific Reports, 2017, 7, 6865.	1.6	98
96	Highly Efficient Performance and Conversion Pathway of Photocatalytic NO Oxidation on SrO-Clusters@Amorphous Carbon Nitride. Environmental Science & E	4.6	203
97	Evaluation of in-sewer transformation of selected illicit drugs and pharmaceutical biomarkers. Science of the Total Environment, 2017, 609, 1172-1181.	3.9	60
98	Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (VI) removal. Journal of Colloid and Interface Science, 2017, 506, 633-643.	5.0	83
99	Prediction of concrete corrosion in sewers with hybrid Gaussian processes regression model. RSC Advances, 2017, 7, 30894-30903.	1.7	34
100	The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment. Frontiers in Microbiology, 2017, 8, 683.	1.5	78
101	Immobilizing Water into Crystal Lattice of Calcium Sulfate for its Separation from Water-in-Oil Emulsion. Environmental Science & Emulsion.	4.6	45
102	Controlled synthesis of Au–Fe heterodimer nanoparticles and their conversion into Au–Fe ₃ O ₄ heterostructured nanoparticles. Nanoscale, 2016, 8, 17947-17952.	2.8	44
103	Wastewater-Enhanced Microbial Corrosion of Concrete Sewers. Environmental Science & Emp; Technology, 2016, 50, 8084-8092.	4.6	85
104	Online Control of Magnesium Hydroxide Dosing for Sulfide Mitigation in Sewers: Algorithm Development, Simulation Analysis, and Field Validation. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	14
105	Formation of mesoporous calcium sulfate microspheres through phase conversion in controlled calcination. RSC Advances, 2016, 6, 79578-79583.	1.7	5
106	Predicting concrete corrosion of sewers using artificial neural network. Water Research, 2016, 92, 52-60.	5.3	106
107	Effects of surface washing on the mitigation of concrete corrosion under sewer conditions. Cement and Concrete Composites, 2016, 68, 88-95.	4.6	30
108	Biofilm Development in Sewer Networks. , 2016, , 145-164.		2

#	Article	IF	Citations
109	Role of indigenous iron in improving sludge dewaterability through peroxidation. Scientific Reports, 2015, 5, 7516.	1.6	8
110	Identification of controlling factors for the initiation of corrosion of fresh concrete sewers. Water Research, 2015, 80, 30-40.	5.3	78
111	Role of extracellular polymeric substances in improvement of sludge dewaterability through peroxidation. Bioresource Technology, 2015, 192, 817-820.	4.8	65
112	Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process. Bioresource Technology, 2015, 182, 267-271.	4.8	21
113	Impact of fluctuations in gaseous H 2 S concentrations on sulfide uptake by sewer concrete: The effect of high H 2 S loads. Water Research, 2015, 81, 84-91.	5.3	28
114	A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate. Bioresource Technology, 2015, 185, 416-420.	4.8	114
115	Corrosion and odor management in sewer systems. Current Opinion in Biotechnology, 2015, 33, 192-197.	3.3	119
116	A facile method to control the structure and morphology of \hat{l}_{\pm} -calcium sulfate hemihydrate. CrystEngComm, 2015, 17, 8549-8554.	1.3	24
117	A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid. Water Research, 2015, 70, 279-287.	5.3	51
118	Inactivation kinetics of anaerobic wastewater biofilms by free nitrous acid. Applied Microbiology and Biotechnology, 2014, 98, 1367-1376.	1.7	13
119	Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Research, 2014, 55, 245-255.	5.3	205
120	The role of iron in sulfide induced corrosion ofÂsewer concrete. Water Research, 2014, 49, 166-174.	5.3	92
121	A review on sludge conditioning by sludge pre-treatment with a focus on advanced oxidation. RSC Advances, 2014, 4, 50644-50652.	1.7	83
122	Enhancing methane production from waste activated sludge using combined free nitrous acid and heat pre-treatment. Water Research, 2014, 63, 71-80.	5.3	139
123	Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion. Water Research, 2014, 65, 157-169.	5.3	122
124	Improving dewaterability of waste activated sludge by combined conditioning with zero-valent iron and hydrogen peroxide. Bioresource Technology, 2014, 174, 103-107.	4.8	44
125	Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor. Water Research, 2014, 62, 202-210.	5.3	62
126	Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems. Water Research, 2014, 48, 569-578.	5.3	74

#	Article	IF	Citations
127	Degradability of creatinine under sewer conditions affects its potential to be used as biomarker in sewage epidemiology. Water Research, 2014, 55, 272-279.	5.3	42
128	Effects of sewer conditions on the degradation of selected illicit drug residues in wastewater. Water Research, 2014, 48, 538-547.	5.3	115
129	A rapid, non-destructive methodology to monitor activity of sulfide-induced corrosion of concrete based on H2S uptake rate. Water Research, 2014, 59, 229-238.	5.3	32
130	Dosing free nitrous acid for sulfide control in sewers: Results of field trials in Australia. Water Research, 2013, 47, 4331-4339.	5. 3	92
131	Free Nitrous Acid (FNA)-Based Pretreatment Enhances Methane Production from Waste Activated Sludge. Environmental Science & Eamp; Technology, 2013, 47, 11897-11904.	4.6	234
132	A free nitrous acid (FNA)-based technology for reducing sludge production. Water Research, 2013, 47, 3663-3672.	5.3	74
133	Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor. Water Research, 2013, 47, 1783-1792.	5.3	77
134	Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide. Journal of Hazardous Materials, 2013, 250-251, 91-98.	6.5	58
135	Biosorption of Cu(II) by powdered anaerobic granular sludge from aqueous medium. Water Science and Technology, 2013, 68, 91-98.	1.2	2
136	The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms. Water Research, 2011, 45, 3735-3743.	5.3	169
137	Optimization of intermittent, simultaneous dosage of nitrite and hydrochloric acid to control sulfide and methane productions in sewers. Water Research, 2011, 45, 6163-6172.	5.3	72
138	Microbial desulfurization for NR ground rubber by Thiobacillus ferrooxidans. Journal of Applied Polymer Science, 2010, 116, NA-NA.	1.3	13
139	Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems. Water Research, 2010, 44, 4241-4251.	5.3	99
140	Sulfur transformation in rising main sewers receiving nitrate dosage. Water Research, 2009, 43, 4430-4440.	5.3	155
141	Transport of Escherichia coli through variably saturated sand columns and modeling approaches. Journal of Contaminant Hydrology, 2007, 93, 2-20.	1.6	44
142	Effects of Soil Matric Suction on Retention and Percolation of Bacillus Subtilis in Intact Soil Cores. Water, Air, and Soil Pollution, 2006, 177, 211-226.	1.1	13
143	Transport and deposition of Bacillus subtilis through an intact soil column. Soil Research, 2005, 43, 695.	0.6	31
144	Test of flow field on the annular meridian plane in a tubular membrane separator with rotary tangential flow. Journal of Chemical Technology and Biotechnology, 2004, 79, 1019-1024.	1.6	1

#	Article	IF	CITATIONS
145	Enhancement of DHA production from Aurantiochytrium sp. by atmospheric and room temperature plasma mutagenesis aided with microbial microdroplet culture screening. Biomass Conversion and Biorefinery, $0, 1$.	2.9	6