Jia-Ren Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/191135/publications.pdf Version: 2024-02-01

IIA-REN DI

#	Article	IF	CITATIONS
1	Nearâ€Infrared Persistent Luminescence and Trap Reshuffling in Mn ⁴⁺ Doped Alkaliâ€Earth Metal Tungstates. Advanced Optical Materials, 2022, 10, 2101714.	3.6	20
2	Modulating trap distribution of persistent phosphors upon simple microwave-assisted solid-state reactions. Chemical Engineering Journal, 2022, 431, 133706.	6.6	5
3	Enabling robust and hour-level organic long persistent luminescence from carbon dots by covalent fixation. Light: Science and Applications, 2022, 11, 80.	7.7	71
4	Revealing trap depth distributions in persistent phosphors with a thermal barrier for charging. Physical Review B, 2022, 105, .	1.1	6
5	Deep-level trap formation in Si-substituted Sr2SnO4:Sm3+ for rewritable optical information storage. Materials Today Chemistry, 2022, 24, 100906.	1.7	6
6	Reversible yellow-gray photochromism in potassium-sodium niobate-based transparent ceramics. Journal of the European Ceramic Society, 2021, 41, 1925-1933.	2.8	48
7	Highly Responsive Photochromic Ceramics for Highâ€Contrast Rewritable Information Displays. Laser and Photonics Reviews, 2021, 15, 2000525.	4.4	51
8	Designing Photochromic Materials with Large Luminescence Modulation and Strong Photochromic Efficiency for Dualâ€Mode Rewritable Optical Storage. Advanced Optical Materials, 2021, 9, 2100669.	3.6	73
9	Energy efficient microwave-assisted preparation of deep red/near-infrared emitting lithium aluminate and gallate phosphors. Journal of Luminescence, 2021, 237, 118168.	1.5	12
10	Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout. Nano-Micro Letters, 2021, 13, 198.	14.4	53
11	Enhanced near-infrared persistent luminescence in MgGa2O4:Cr3+ through codoping. Journal of Luminescence, 2020, 220, 117035.	1.5	31
12	ldentifying Nearâ€Infrared Persistent Luminescence in Cr ³⁺ â€Doped Magnesium Gallogermanates Featuring Afterglow Emission at Extremely Low Temperature. Advanced Optical Materials, 2020, 8, 1901848.	3.6	45
13	Persistent Luminescence: Temperature Dependency of Trap ontrolled Persistent Luminescence (Laser) Tj ETQq	1 1 0.784 4.4	314 rgBT /○
14	Achieving Efficient Red-Emitting Sr ₂ Ca _{1â[*]Î^{<}/sub>Ln_{Î^{<}/sub>WO₆:Mn⁴⁺ (Ln = La, Gd, Y, Lu, Î) Application via Facile Ion Substitution in Luminescence-Ignorable}}	Tj ETQq0	0 0 rgBT /O 35
15	Sr ₂ CaWO ₆ :Mn ⁴⁺ ., 2020, 2, 771-778. Red-Light-Activated Red-Emitting Persistent Luminescence for Multicycle Bioimaging: A Case Study of CaS:Eu2+,Dy3+. Journal of Physical Chemistry C, 2020, 124, 16586-16595.	1.5	27
16	Temperature Dependency of Trap ontrolled Persistent Luminescence. Laser and Photonics Reviews, 2020, 14, 2000060.	4.4	47
17	Persistent phosphors for the future: Fit for the right application. Journal of Applied Physics, 2020, 128,	1.1	99
18	Temperature dependent persistent luminescence: Evaluating the optimum working temperature. Scientific Reports, 2019, 9, 10517.	1.6	44

Jia-Ren Du

#	Article	IF	CITATIONS
19	Near-infrared persistent luminescence in Mn4+ doped perovskite type solid solutions. Ceramics International, 2019, 45, 8345-8353.	2.3	33
20	Facile Synthesis of Mn4+-Activated Double Perovskite Germanate Phosphors with Near-Infrared Persistent Luminescence. Nanomaterials, 2019, 9, 1759.	1.9	24
21	Predicting the afterglow duration in persistent phosphors: a validated approach to derive trap depth distributions. Physical Chemistry Chemical Physics, 2018, 20, 30455-30465.	1.3	39
22	Clarification of the Molecular Doping Mechanism in Organic Singleâ€Crystalline Semiconductors and their Application in Colorâ€Tunable Lightâ€Emitting Devices. Advanced Materials, 2018, 30, e1801078.	11.1	53
23	Thermoluminescence and near-infrared persistent luminescence in LaAlO3:Mn4+,R (R= Na+, Ca2+, Sr2+,) Tj ETQo	1 1 0.784 2.3	314 rgBT /O
24	LaAlO3:Mn4+ as Near-Infrared Emitting Persistent Luminescence Phosphor for Medical Imaging: A Charge Compensation Study. Materials, 2017, 10, 1422.	1.3	61
25	(Invited) Cr3+ and Mn4+: Dopants for Near-Infrared Emitting Persistent Phosphors. ECS Meeting Abstracts, 2017, , .	0.0	0
26	Exploring long-wave infrared transmitting materials with AxBy form: First-principles gene-like studies. Scientific Reports, 2016, 6, 21912.	1.6	3
27	Instability origin and improvement scheme of facial Alq3 for blue OLED application. Chemical Research in Chinese Universities, 2016, 32, 423-427.	1.3	2
28	memory device. Chemical Research in Chinese Universities, 2016, 32, 76-81.	1.3	4