Jun-Ming Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/1911179/jun-ming-liu-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,067 467 124 45 h-index g-index citations papers 6.71 20,887 491 5.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
467	High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. <i>Science</i> , 2008 , 320, 634-8	33.3	4220
466	Multiferroicity: the coupling between magnetic and polarization orders. <i>Advances in Physics</i> , 2009 , 58, 321-448	18.4	1161
465	Nitrogen-doped graphene and its electrochemical applications. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7491		934
464	Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. <i>Applied Physics Letters</i> , 2004 , 84, 1731-1733	3.4	877
463	Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. <i>Advanced Materials</i> , 2007 , 19, 2889-2892	24	745
462	Rational molecular passivation for high-performance perovskite light-emitting diodes. <i>Nature Photonics</i> , 2019 , 13, 418-424	33.9	638
461	Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. <i>Advanced Materials</i> , 2011 , 23, 664-8	24	569
460	An organic-inorganic perovskite ferroelectric with large piezoelectric response. <i>Science</i> , 2017 , 357, 306	-30,93	506
459	Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. <i>Advances in Physics</i> , 2015 , 64, 519-626	18.4	486
458	Magnetoelectric CoFe2O4Pb(Zr,Ti)O3 composite thin films derived by a sol-gel process. <i>Applied Physics Letters</i> , 2005 , 86, 122501	3.4	265
457	Long Electron-Hole Diffusion Length in High-Quality Lead-Free Double Perovskite Films. <i>Advanced Materials</i> , 2018 , 30, e1706246	24	175
456	High-performance programmable memory devices based on co-doped BaTiO3. <i>Advanced Materials</i> , 2011 , 23, 1351-5	24	172
455	Efficient Planar Perovskite Solar Cells with Improved Fill Factor via Interface Engineering with Graphene. <i>Nano Letters</i> , 2018 , 18, 2442-2449	11.5	154
454	Multiferroic properties of CaMn7O12. <i>Physical Review B</i> , 2011 , 84,	3.3	132
453	Origin of multiferroic spiral spin order in the RMnO3 perovskites. <i>Physical Review B</i> , 2008 , 78,	3.3	100
452	RECENT PROGRESS OF MULTIFERROIC PEROVSKITE MANGANITES. <i>Modern Physics Letters B</i> , 2012 , 26, 1230004	1.6	93
451	High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. <i>Science Advances</i> , 2017 , 3, e1700919	14.3	87

(2001-2016)

450	Ferroelectricity in Covalently functionalized Two-dimensional Materials: Integration of High-mobility Semiconductors and Nonvolatile Memory. <i>Nano Letters</i> , 2016 , 16, 7309-7315	11.5	83
449	Preparation of CuD-Reduced Graphene Nanocomposite Modified Electrodes towards Ultrasensitive Dopamine Detection. <i>Sensors</i> , 2018 , 18,	3.8	83
448	Magnetoelectric CoFe2O4-lead zirconate titanate thick films prepared by a polyvinylpyrrolidone-assisted sol-gel method. <i>Applied Physics Letters</i> , 2006 , 89, 122914	3.4	80
447	Stable, High-Sensitivity and Fast-Response Photodetectors Based on Lead-Free Cs2AgBiBr6 Double Perovskite Films. <i>Advanced Optical Materials</i> , 2019 , 7, 1801732	8.1	77
446	Flexible, Semitransparent, and Inorganic Resistive Memory based on BaTi Co O Film. <i>Advanced Materials</i> , 2017 , 29, 1700425	24	74
445	Spin-Glass Ground State in a Triangular-Lattice Compound YbZnGaO_{4}. <i>Physical Review Letters</i> , 2018 , 120, 087201	7.4	72
444	Magnetoelectric Coupling in Well-Ordered Epitaxial BiFeO3/CoFe2O4/SrRuO3 Heterostructured Nanodot Array. <i>ACS Nano</i> , 2016 , 10, 1025-32	16.7	72
443	Efficient and carbon-based hole transport layer-free CsPbI2Br planar perovskite solar cells using PMMA modification. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3852-3861	7.1	70
442	A review of flexible perovskite oxide ferroelectric films and their application. <i>Journal of Materiomics</i> , 2020 , 6, 1-16	6.7	69
441	Flexible PbZr0.52Ti0.48O3 Capacitors with Giant Piezoelectric Response and Dielectric Tunability. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600542	6.4	66
440	Cluster-glass state in manganites induced by A-site cation-size disorder. <i>Physical Review B</i> , 2006 , 73,	3.3	66
439	Single-phase multiferroics: new materials, phenomena, and physics. <i>National Science Review</i> , 2019 , 6, 653-668	10.8	65
438	Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures. <i>Scientific Reports</i> , 2013 , 3, 2482	4.9	62
437	Dynamic response and hysteresis dispersion scaling of ferroelectric SrBi2Ta2O9 thin films. <i>Applied Physics Letters</i> , 2003 , 83, 1406-1408	3.4	61
436	Frequency response and scaling of hysteresis for ferroelectric Pr(Zr0.52Ti0.48)O3 thin films deposited by laser ablation. <i>Journal of Applied Physics</i> , 1999 , 86, 5198-5202	2.5	61
435	High thermoelectric performance of superionic argyrodite compound Ag8SnSe6. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5806-5813	7.1	60
434	Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates. <i>Scientific Reports</i> , 2015 , 5, 9680	4.9	59
433	Scaling on hysteresis dispersion in ferroelectric systems. <i>Applied Physics Letters</i> , 2001 , 79, 236-238	3.4	59

432	Resistance switching memory in perovskite oxides. <i>Annals of Physics</i> , 2015 , 358, 206-224	2.5	55
431	BaFe(2)Se(3) a high T(C) magnetic multiferroic with large ferrielectric polarization. <i>Physical Review Letters</i> , 2014 , 113, 187204	7.4	54
430	Interface Engineering of Domain Structures in BiFeO Thin Films. Nano Letters, 2017, 17, 486-493	11.5	52
429	Monte Carlo simulation of magnetic behavior of a spin-chain system on a triangular lattice. <i>Physical Review B</i> , 2006 , 74,	3.3	52
428	Phonon-assisted energy back transfer-induced multicolor upconversion emission of Gd2O3:Yb(3+)/Er(3+) nanoparticles under near-infrared excitation. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 15412-8	3.6	50
427	High energy storage performances of Bi1\(\text{BSmxFe0.95Sc0.05O3}\) lead-free ceramics synthesized by rapid hot press sintering. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 2331-2338	6	49
426	Investigation of the bipolar effect in the thermoelectric material CaMg2Bi2 using a first-principles study. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 16566-74	3.6	47
425	Steplike magnetization of spin chains in a triangular lattice: Monte Carlo simulations. <i>Physical Review B</i> , 2006 , 73,	3.3	47
424	Temperature-dependent and polarization-tuned resistive switching in Au/BiFeO3/SrRuO3 junctions. <i>Applied Physics Letters</i> , 2014 , 104, 143503	3.4	46
423	Magnetically Recyclable MoS2/Fe3O4 Hybrid Composite as Visible Light Responsive Photocatalyst with Enhanced Photocatalytic Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 1673-1	68 2	46
422	One-step chemical vapor deposition of MoS nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production. <i>Nanoscale</i> , 2018 , 10, 3518-3525	7.7	44
421	Hexagonal phase stabilization and magnetic orders of multiferroic Lu1 \square ScxFeO3. <i>Physical Review B</i> , 2016 , 93,	3.3	43
420	Efficient and stable CH 3 NH 3 PbI 3-x (SCN) x planar perovskite solar cells fabricated in ambient air with low-temperature process. <i>Journal of Power Sources</i> , 2018 , 377, 52-58	8.9	42
419	Enhanced performance of CH3NH3PbI3-x Cl x perovskite solar cells by CH3NH3I modification of TiO2-perovskite layer interface. <i>Nanoscale Research Letters</i> , 2016 , 11, 316	5	42
418	Ultrathin Alumina Mask-Assisted Nanopore Patterning on Monolayer MoS for Highly Catalytic Efficiency in Hydrogen Evolution Reaction. <i>ACS Applied Materials & Description</i> , 10, 8026-8035	9.5	41
417	Fabrication and photoelectrochemical properties of silicon nanowires/g-C3N4 core/shell arrays. <i>Applied Surface Science</i> , 2017 , 396, 609-615	6.7	41
416	Unipolar resistive switching effect in YMn1D3 thin films. <i>Applied Physics Letters</i> , 2010 , 96, 012103	3.4	41
415	Strong magnetoelectric coupling in multiferroic BiFeO3Pb(Zr0.52Ti0.48)O3 composite films derived from electrophoretic deposition. <i>Applied Physics Letters</i> , 2008 , 93, 192915	3.4	41

(2008-2020)

414	Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. <i>Nature Communications</i> , 2020 , 11, 3577	17.4	40
413	Thinning ferroelectric films for high-efficiency photovoltaics based on the Schottky barrier effect. NPG Asia Materials, 2019 , 11,	10.3	39
412	Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures. <i>Scientific Reports</i> , 2016 , 6, 22948	4.9	39
411	Ho substitution suppresses collinear Dy spin order and enhances polarization in DyMnO3. <i>Applied Physics Letters</i> , 2011 , 99, 102509	3.4	39
410	Solvent-Assisted Low-Temperature Crystallization of SnO2 Electron-Transfer Layer for High-Efficiency Planar Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1900557	15.6	38
409	Defect states and charge trapping characteristics of HfO2 films for high performance nonvolatile memory applications. <i>Applied Physics Letters</i> , 2014 , 105, 172902	3.4	38
408	Enhanced ferromagnetism and ferroelectricity in multiferroic CuCr1\(\mathbb{N}\)ixO2. <i>Applied Physics Letters</i> , 2009 , 94, 172504	3.4	38
407	Emergence of Ferroelectricity in Halide Perovskites. Small Methods, 2020, 4, 2000149	12.8	37
406	Resistive switching induced by charge trapping/detrapping: a unified mechanism for colossal electroresistance in certain Nb:SrTiO3-based heterojunctions. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7317-7327	7.1	37
405	Dopant-free F-substituted benzodithiophene copolymer hole-transporting materials for efficient and stable perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1858-1864	13	37
404	Experimental observation of ferrielectricity in multiferroic DyMn2O5. Scientific Reports, 2014 , 4, 3984	4.9	36
403	Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption. <i>Applied Physics Letters</i> , 2018 , 113, 022902	3.4	35
402	Striped multiferroic phase in double-exchange model for quarter-doped manganites. <i>Physical Review Letters</i> , 2009 , 103, 107204	7.4	35
401	Coexistence of unipolar and bipolar resistive switching in BiFeO3 and Bi0.8Ca0.2FeO3 films. <i>Journal of Applied Physics</i> , 2012 , 111, 104103	2.5	35
400	Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics. <i>Nature Communications</i> , 2016 , 7, 12825	17.4	34
399	Design and simple synthesis of composite BiTiO/BiTiO with a good photocatalytic quantum efficiency and high production of photo-generated hydroxyl radicals. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 26530-26538	3.6	34
398	Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnOIthin films. <i>Scientific Reports</i> , 2013 , 3, 3374	4.9	34
397	Multiferroic response and clamped domain structure in a two-dimensional spiral magnet: Monte Carlo simulation. <i>Physical Review B</i> , 2008 , 77,	3.3	34

396	Temperature-dependent fatigue behaviors of ferroelectric ABO3-type and layered perovskite oxide thin films. <i>Applied Physics Letters</i> , 2004 , 84, 3352-3354	3.4	34
395	Energy storage and polarization switching kinetics of (001)-oriented Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films. <i>Applied Physics Letters</i> , 2016 , 108, 112903	3.4	34
394	Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers. <i>Electrochimica Acta</i> , 2018 , 261, 445-453	6.7	33
393	Synthesis of visible-light-driven BiOBrxI1-x solid solution nanoplates by ultrasound-assisted hydrolysis method with tunable bandgap and superior photocatalytic activity. <i>Journal of Alloys and Compounds</i> , 2018 , 732, 167-177	5.7	33
392	An Artificial Optoelectronic Synapse Based on a Photoelectric Memcapacitor. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900858	6.4	33
391	Predicting high thermoelectric performance of ABX ternary compounds NaMgX (X = P, Sb, As) with weak electron \vec{p} honon coupling and strong bonding anharmonicity. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3281-3289	7.1	32
390	Transparent Glass with the Growth of Pyramid-Type MoS for Highly Efficient Water Disinfection under Visible-Light Irradiation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 23444-23450	9.5	32
389	High efficiency solar cells as fabricated by Sb2S3-modified TiO2 nanofibrous networks. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 8345-50	9.5	32
388	Stable Triple Cation Perovskite Precursor for Highly Efficient Perovskite Solar Cells Enabled by Interaction with 18C6 Stabilizer. <i>Advanced Functional Materials</i> , 2020 , 30, 1908613	15.6	32
387	Promoting the Hole Extraction with Co3O4 Nanomaterials for Efficient Carbon-Based CsPbI2Br Perovskite Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1800315	7.1	32
386	Ferroelectric Diodes with Charge Injection and Trapping. Physical Review Applied, 2017, 7,	4.3	31
385	An efficient multi-functional material based on polyether-substituted indolocarbazole for perovskite solar cells and solution-processed non-doped OLEDs. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1539-1547	13	31
384	Ferroelectricity and superparamagnetism in Sr/Ti nonstoichiometric SrTiO3. <i>Physical Review B</i> , 2012 , 85,	3.3	31
383	Coexistence of magnetic and ferroelectric behaviors of pyrochlore Ho2Ti2O7. <i>Journal of Applied Physics</i> , 2009 , 106, 104101	2.5	31
382	Highly anisotropic resistivities in the double-exchange model for strained manganites. <i>Physical Review B</i> , 2010 , 82,	3.3	30
381	A Practical ITO Replacement Strategy: Sputtering-Free Processing of a Metallic Nanonetwork. <i>Advanced Materials Technologies</i> , 2017 , 2, 1700061	6.8	29
380	Ferroelectricity of polycrystalline GdMnO3 and multifold magnetoelectric responses. <i>Applied Physics A: Materials Science and Processing</i> , 2013 , 112, 947-954	2.6	29
379	Controllable Photovoltaic Effect of Microarray Derived from Epitaxial Tetragonal BiFeO Films. <i>ACS Applied Materials & Derived Materials & Derived</i>	9.5	29

(2014-2009)

378	Ru-doping-induced ferromagnetism in charge-ordered La0.4Ca0.6MnO3. <i>Physical Review B</i> , 2009 , 79,	3.3	29
377	Controllable phase connectivity and magnetoelectric coupling behavior in CoFe(2)O(4)-Pb(Zr,Ti)O(3) nanostructured films. <i>Nanotechnology</i> , 2007 , 18, 465708	3.4	29
376	Ultrathin Co3O4 nanosheet clusters anchored on nitrogen doped carbon nanotubes/3D graphene as binder-free cathodes for Al-air battery. <i>Chemical Engineering Journal</i> , 2020 , 381, 122681	14.7	29
375	Electrically Driven Reversible Magnetic Rotation in Nanoscale Multiferroic Heterostructures. <i>ACS Nano</i> , 2018 , 12, 6767-6776	16.7	29
374	Coupled ferroelectric polarization and magnetization in spinel FeCr2S4. Scientific Reports, 2014, 4, 6530	4.9	28
373	Novel multiferroicity in GdMnO3 thin films with self-assembled nano-twinned domains. <i>Scientific Reports</i> , 2014 , 4, 7019	4.9	28
372	Dynamic hysteresis scaling of ferroelectric Pb(0.9)Ba(0.1)(Zr(0.52)Ti(0.48))O(3) thin films. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 485901	1.8	28
371	Mean-field theory for ferroelectricity in Ca3CoMnO6. <i>Physical Review B</i> , 2009 , 79,	3.3	28
370	Nanoscale Topotactic Phase Transformation in SrFeO Epitaxial Thin Films for High-Density Resistive Switching Memory. <i>Advanced Materials</i> , 2019 , 31, e1903679	24	27
369	Nature-Inspired Metallic Networks for Transparent Electrodes. <i>Advanced Functional Materials</i> , 2018 , 28, 1705023	15.6	26
368	Flexible, Fatigue-Free, and Large-Scale BiLaTiO Ferroelectric Memories. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 21428-21433	9.5	26
367	Response Characteristics of Hydrogen Sensors Based on PMMA-Membrane-Coated Palladium Nanoparticle Films. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 27193-27201	9.5	26
366	Multiferroic phase diagram of Y partially substituted Dy1⊠YxMnO3. <i>Applied Physics Letters</i> , 2011 , 98, 012510	3.4	26
365	Ferroelectric Polarization Switching Dynamics and Domain Growth of Triglycine Sulfate and Imidazolium Perchlorate. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600038	6.4	26
364	Death signal transduction induced by co-immobilized TNF-plus IFN-land the development of polymeric anti-cancer drugs. <i>Biomaterials</i> , 2010 , 31, 9074-85	15.6	25
363	A Gd@C single-molecule electret. <i>Nature Nanotechnology</i> , 2020 , 15, 1019-1024	28.7	25
362	Magnetic field gradient driven dynamics of isolated skyrmions and antiskyrmions in frustrated magnets. <i>New Journal of Physics</i> , 2018 , 20, 053037	2.9	24
361	The development of BiFeO3-based ceramics. <i>Science Bulletin</i> , 2014 , 59, 5161-5169		24

360	Coupling and competition between ferroelectric and antiferroelectric states in Ca-doped Sr0.9\(\mathbb{B}\) Ba0.1CaxTiO3: Multipolar states. <i>Physical Review B</i> , 2011 , 83,	3.3	24
359	Monte Carlo simulation of the dielectric susceptibility of Ginzburg-Landau mode relaxors. <i>Physical Review B</i> , 2004 , 69,	3.3	24
358	CoreBhell MoS2@CoO Electrocatalyst for Water Splitting in Neural and Alkaline Solutions. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 5833-5839	3.8	24
357	Large electroresistance and tunable photovoltaic properties of ferroelectric nanoscale capacitors based on ultrathin super-tetragonal BiFeO3 films. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3323-3329	7.1	23
356	Observation of Exotic Domain Structures in Ferroelectric Nanodot Arrays Fabricated via a Universal Nanopatterning Approach. <i>ACS Applied Materials & Domain Structures in Ferroelectric Nanodot Arrays Fabricated via a Universal Nanopatterning Approach. ACS Applied Materials & Domain Structures in Ferroelectric Nanodot Arrays Fabricated via a Universal Nanopatterning Approach. ACS Applied Materials & Domain Structures in Ferroelectric Nanodot Arrays Fabricated via a Universal Nanopatterning Approach. ACS Applied Materials & Domain Structures in Ferroelectric Nanodot Arrays Fabricated via a Universal Nanopatterning Approach. ACS Applied Materials & Domain Structures in Ferroelectric Nanodot Arrays Fabricated via a Universal Nanopatterning Approach. ACS Applied Materials & Domain Structures in Ferroelectric Nanopatterning Nanopatterning Approach. ACS Applied Materials & Domain Structures in Ferroelectric Nanopatterning Nanopatt</i>	9.5	23
355	DyMnO3: A model system of type-II multiferroics. <i>Journal of Materiomics</i> , 2016 , 2, 213-224	6.7	23
354	Excellent Ferroelectric Properties of Hf0.5Zr0.5O2 Thin Films Induced by Al2O3 Dielectric Layer. <i>IEEE Electron Device Letters</i> , 2019 , 40, 1937-1940	4.4	23
353	Flexible SmHe/polyvinylidene fluoride heterostructural film with large magnetoelectric voltage output. <i>Applied Physics Letters</i> , 2010 , 97, 212902	3.4	23
352	Monte Carlo simulation of ferroelectric domain growth. <i>Physical Review B</i> , 2006 , 73,	3.3	23
351	Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D materials. <i>National Science Review</i> , 2020 , 7, 373-380	10.8	23
350	Revealing Controllable Anisotropic Magnetoresistance in Spin Drbit Coupled Antiferromagnet Sr2IrO4. <i>Advanced Functional Materials</i> , 2018 , 28, 1706589	15.6	22
349	An Unusual Mechanism for Negative Differential Resistance in Ferroelectric Nanocapacitors: Polarization Switching-Induced Charge Injection Followed by Charge Trapping. <i>ACS Applied Materials & Discounty Interfaces</i> , 2017 , 9, 27120-27126	9.5	22
348	Colossal Figure of Merit in Transparent-Conducting Metallic Ribbon Networks. <i>Advanced Materials Technologies</i> , 2016 , 1,	6.8	22
347	Constructing novel WO3/Fe(III) nanofibers photocatalysts with enhanced visible-light-driven photocatalytic activity via interfacial charge transfer effect. <i>Materials Today Energy</i> , 2017 , 3, 45-52	7	21
346	Transparent, Flexible, Fatigue-Free, Optical-Read, and Nonvolatile Ferroelectric Memories. <i>ACS Applied Materials & Description of the </i>	9.5	21
345	Cell cycle arrest and apoptosis of OVCAR-3 and MCF-7 cells induced by co-immobilized TNF-plus IFN-lbn polystyrene and the role of p53 activation. <i>Biomaterials</i> , 2012 , 33, 6162-71	15.6	21
344	Resistive switching and photovoltaic effects in ferroelectric BaTiO3-based capacitors with Ti and Pt top electrodes. <i>Applied Physics Letters</i> , 2017 , 111, 252901	3.4	21
343	Superconducting gap induced barrier enhancement in a BiFeO3-based heterostructure. <i>Applied Physics Letters</i> , 2010 , 97, 252905	3.4	21

342	Dynamic hysteresis in ferroelectric systems: experiment and Monte Carlo simulation. <i>Applied Physics A: Materials Science and Processing</i> , 2002 , 75, 507-514	2.6	21	
341	High performance planar perovskite solar cells based on CH3NH3PbI3-x(SCN)x perovskite film and SnO2 electron transport layer prepared in ambient air with 70% humility. <i>Electrochimica Acta</i> , 2018 , 260, 468-476	6.7	21	
340	Quasifractal Networks as Current Collectors for Transparent Flexible Supercapacitors. <i>Advanced Functional Materials</i> , 2019 , 29, 1906618	15.6	20	
339	Solvent-induced textured structure and improved crystallinity for high performance perovskite solar cells. <i>Optical Materials Express</i> , 2017 , 7, 2150	2.6	20	
338	Competition between quantum fluctuation and ferroelectric order in Eu1NBaxTiO3. <i>Applied Surface Science</i> , 2012 , 258, 4601-4606	6.7	20	
337	Strong magnetoelectric coupling in Tb E e B b(Zr0.52Ti0.48)O3 thin-film heterostructure prepared by low energy cluster beam deposition. <i>Applied Physics Letters</i> , 2008 , 92, 012920	3.4	20	
336	Influence of A-site codoping on ferroelectricity of quantum paraelectric SrTiO3. <i>Journal of Applied Physics</i> , 2008 , 103, 124104	2.5	20	
335	Ru doping induced quantum paraelectricity in ferroelectric Sr0.9Ba0.1TiO3. <i>Applied Physics Letters</i> , 2008 , 92, 172912	3.4	20	
334	An All-Inorganic, Transparent, Flexible, and Nonvolatile Resistive Memory. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800412	6.4	20	
333	Ultra-low coercive field of improper ferroelectric Ca3Ti2O7 epitaxial thin films. <i>Applied Physics Letters</i> , 2017 , 110, 042901	3.4	19	
332	Photovoltaic, photo-impedance, and photo-capacitance effects of the flexible (111) BiFeO3 film. <i>Applied Physics Letters</i> , 2019 , 115, 112902	3.4	19	
331	Giant anisotropic magnetoresistance and nonvolatile memory in canted antiferromagnet SrIrO. <i>Nature Communications</i> , 2019 , 10, 2280	17.4	19	
330	Dielectric and magnetic properties of BiFe1-4x/3TixO3 ceramics with iron vacancies: Experimental and first-principles studies. <i>Journal of Applied Physics</i> , 2013 , 114, 034105	2.5	19	
329	Effect of B-site Al-doping on electric polarization in DyMnO3. <i>Applied Physics Letters</i> , 2010 , 96, 252902	3.4	19	
328	A Solution-Processed Dopant-Free Tin Phthalocyanine (SnPc) Hole Transport Layer for Efficient and Stable Carbon-Based CsPbI2Br Planar Perovskite Solar Cells Prepared by a Low-Temperature Process. ACS Applied Energy Materials, 2020, 3, 7832-7843	6.1	19	
327	Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 387-393	6	19	
326	Pd Nanoparticle Film on a Polymer Substrate for Transparent and Flexible Hydrogen Sensors. <i>ACS Applied Materials & District & District Applied Materials & District & District & District & D</i>	9.5	19	
325	Effective silicon nanowire arrays/WO core/shell photoelectrode for neutral pH water splitting. <i>Nanotechnology</i> , 2017 , 28, 275401	3.4	18	

324	Manipulation of Conductive Domain Walls in Confined Ferroelectric Nanoislands. <i>Advanced Functional Materials</i> , 2019 , 29, 1807276	15.6	18
323	The ferroelectric polarization of Y2CoMnO6 aligns along the b-axis: the first-principles calculations. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 20961-70	3.6	18
322	Kinetics controlled aging effect of ferroelectricity in Al-doped and Ga-doped BaTiO3. <i>Applied Physics Letters</i> , 2010 , 97, 112906	3.4	18
321	Spin persistence in an antiferromagnetic triangular Ising lattice under a magnetic field. <i>Physical Review B</i> , 2007 , 76,	3.3	18
320	Domain structures and magnetoelectric effects in multiferroic nanostructures. <i>MRS Communications</i> , 2016 , 6, 330-340	2.7	18
319	Up-conversion luminescence, thermometry, and optical heating properties of Er- and Yb-doped KLaNbO submicro-particles synthesized by a simple molten salt method. <i>Dalton Transactions</i> , 2018 , 47, 11337-11345	4.3	18
318	Tuning electrical conductivity, charge transport, and ferroelectricity in epitaxial BaTiO3 films by Nb-doping. <i>Applied Physics Letters</i> , 2017 , 110, 182903	3.4	17
317	Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol derivatives. <i>Journal of Power Sources</i> , 2018 , 396, 49-56	8.9	17
316	Collinear magnetic structure and multiferroicity in the polar magnet Co2Mo3O8. <i>Physical Review B</i> , 2019 , 100,	3.3	17
315	Ferroelectricity generated by spin-orbit and spin-lattice couplings in multiferroic DyMnO3. <i>Frontiers of Physics</i> , 2012 , 7, 408-417	3.7	17
314	Enhancement of ferroelectricity in Cr-doped Ho2Ti2O7. Applied Physics Letters, 2010, 96, 242904	3.4	17
313	Multiferroicity and phase transitions in Tm-substituted GdMnO3. <i>Journal of Applied Physics</i> , 2012 , 112, 034115	2.5	17
312	Monte Carlo simulation on the size effect in ferroelectric nanostructures. <i>Journal of Applied Physics</i> , 2009 , 106, 114103	2.5	17
311	Enhanced polarization and magnetoelectric response in Tb1 Ho x MnO3. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 99, 323-331	2.6	17
310	Low-Temperature-Processed WOx as Electron Transfer Layer for Planar Perovskite Solar Cells Exceeding 20% Efficiency. <i>Solar Rrl</i> , 2020 , 4, 1900499	7.1	17
309	Unusual ferromagnetism enhancement in ferromagnetically optimal manganite La0.7-yCa0.3+yMn1-yRuyO3 (0). Scientific Reports, 2015, 5, 9922	4.9	16
308	Multiferroicity and Magnetoelectric Coupling in TbMnO3 Thin Films. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 26603-7	9.5	16
307	Polarization imprint effects on the photovoltaic effect in Pb(Zr,Ti)O3 thin films. <i>Applied Physics Letters</i> , 2018 , 112, 152905	3.4	16

306	All-Inorganic Flexible BaSrTiO Thin Films with Excellent Dielectric Properties over a Wide Range of Frequencies. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 27088-27097	9.5	16
305	Stabilized helical spin order and multiferroic phase coexistence in MnWO4: Consequence of 4d Ru substitution of Mn. <i>Physical Review B</i> , 2013 , 87,	3.3	16
304	An investigation on magnetism, spinphonon coupling, and ferroelectricity in multiferroic GdMn2O5. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 96, 991-996	2.6	16
303	Pathway of programmed cell death in HeLa cells induced by polymeric anti-cancer drugs. <i>Biomaterials</i> , 2011 , 32, 3637-46	15.6	16
302	Preparation, magnetic characterization, and optical band gap of EuTiO3 nanoparticles. <i>Applied Surface Science</i> , 2011 , 257, 4505-4509	6.7	16
301	Spin frustration destruction and ferroelectricity modulation in Ca3CoMnO6: Effects of Mn deficiency. <i>Journal of Applied Physics</i> , 2012 , 111, 07D901	2.5	16
300	Cluster-assembled Tb-Fe nanostructured films produced by low energy cluster beam deposition. <i>Nanotechnology</i> , 2007 , 18, 265705	3.4	16
299	Monte Carlo simulation on dielectric and ferroelectric behaviors of relaxor ferroelectrics. <i>Journal of Applied Physics</i> , 2004 , 95, 4282-4290	2.5	16
298	Spinodal decomposition of CuCo alloys. <i>Physica Status Solidi A</i> , 1993 , 138, 157-174		16
297	Interfacial coupling induced critical thickness for the ferroelectric bistability of two-dimensional ferromagnet/ferroelectric van der Waals heterostructures. <i>Physical Review B</i> , 2019 , 100,	3.3	16
296	Photocatalytic properties of a new Z-scheme system BaTiO/InS with a core-shell structure <i>RSC Advances</i> , 2019 , 9, 11377-11384	3.7	15
295	Controllable defect driven symmetry change and domain structure evolution in BiFeO with enhanced tetragonality. <i>Nanoscale</i> , 2019 , 11, 8110-8118	7.7	15
294	The main 1/2 magnetization plateau in Shastry-Sutherland magnets: Effect of the long-range Ruderman-Kittel-Kasuya-Yosida interaction. <i>Europhysics Letters</i> , 2014 , 105, 17009	1.6	15
293	The role of STAT-6 as a key transcription regulator in HeLa cell death induced by IFN-I/TNF-II co-immobilized on nanoparticles. <i>Biomaterials</i> , 2014 , 35, 5016-27	15.6	15
292	Influence of Heterocyclic Spacer and End Substitution on Hole Transporting Properties Based on Triphenylamine Derivatives: Theoretical Investigation. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 1673	1-∳673	8 ¹⁵
291	Electronic Structure and Charge-Trapping Characteristics of the AlO-TiAlO-SiO Gate Stack for Nonvolatile Memory Applications. <i>Nanoscale Research Letters</i> , 2017 , 12, 270	5	15
290	Ferroelectricity driven magnetism at domain walls in LaAlO3/PbTiO3 superlattices. <i>Scientific Reports</i> , 2015 , 5, 13052	4.9	15
289	Modulated multiferroicity of Cr-doped orthorhombic polycrystalline YMnO3. <i>Journal Physics D:</i> Applied Physics, 2012 , 45, 055003	3	15

288	Multi-step magnetization of the Ising model on a Shastry-Sutherland lattice: a Monte Carlo simulation. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 386003	1.8	15
287	Multiferroicity in spin ice Ho2Ti2O7: An investigation on single crystals. <i>Journal of Applied Physics</i> , 2013 , 113, 17D901	2.5	15
286	The competing spin orders and fractional magnetization plateaus of the classical Heisenberg model on Shastry-Sutherland lattice: Consequence of long-range interactions. <i>Journal of Applied Physics</i> , 2013 , 113, 073908	2.5	15
285	Reversible resistance switching in La0.225Pr0.4Ca0.375MnO3: The Joule-heat-assisted phase transition. <i>Applied Physics Letters</i> , 2009 , 95, 143502	3.4	15
284	Dynamic hysteresis of tetragonal ferroelectrics: The resonance of 90 th domain switching. <i>Applied Physics Letters</i> , 2012 , 100, 062904	3.4	15
283	Enhanced multiferroicity in Mg-doped Ca3Co2MnxO6. <i>Applied Physics Letters</i> , 2010 , 96, 022516	3.4	15
282	Magnetization switching in the BiFe0.9Mn0.1O3 thin films modulated by resistive switching process. <i>Applied Physics Letters</i> , 2016 , 109, 112903	3.4	15
281	Highly sensitive up-conversion thermometric performance in Nd3+ and Yb3+ sensitized Ba4La2Ti4Nb6O30 based on near-infrared emissions. <i>Journal of Physics and Chemistry of Solids</i> , 2019 , 124, 130-136	3.9	15
280	Ion Beam Defect Engineering on ReS2/Si Photocathode with Significantly Enhanced Hydrogen Evolution Reaction. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801663	4.6	15
279	Robust ferromagnetism in zigzag-edge rich MoS pyramids. <i>Nanoscale</i> , 2018 , 10, 11578-11584	7.7	15
278	3D honeycomb NiCo2S4 @ Ni(OH)2 nanosheets for flexible all-solid-state asymmetric supercapacitors with enhanced specific capacitance. <i>Journal of Alloys and Compounds</i> , 2019 , 790, 693-70) 5 ·7	14
277	Sodium bismuth dichalcogenides: candidates for ferroelectric high-mobility semiconductors for multifunctional applications. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 8553-8558	3.6	14
276	Room temperature multiferroic and magnetodielectric properties in Sm and Sc co-doped BiFeO3ceramics. <i>Journal Physics D: Applied Physics</i> , 2015 , 48, 395302	3	14
275	Enhanced performance of planar perovskite solar cells using low-temperature processed Ga-doped TiO 2 compact film as efficient electron-transport layer. <i>Electrochimica Acta</i> , 2018 , 272, 68-76	6.7	14
274	Effective photodegradation of tetracycline by narrow-energy band gap photocatalysts La2-xSrxNiMnO6 (x ≠ 0, 0.05, 0.10, and 0.125). <i>Journal of Alloys and Compounds</i> , 2019 , 806, 451-463	5.7	14
273	Dynamic magnetization process in the frustrated Shastry-Sutherland system TmB 4. <i>Europhysics Letters</i> , 2013 , 102, 37005	1.6	14
272	Local electrical conduction in polycrystalline La-doped BiFeOII hin films. <i>Nanotechnology</i> , 2013 , 24, 2257	0,24	14
271	Cycloidal magnetism driven ferroelectricity in double tungstate LiFe(WO4)2. <i>Physical Review B</i> , 2017 , 95,	3.3	14

(2018-2012)

270	Three-state resistive switching in CoFe2O4/Pb(Zr0.52Ti0.48)O3/ZnO heterostructure. <i>Applied Physics Letters</i> , 2012 , 100, 262903	3.4	14	
269	Magnetoelectric coupling induced by exchange striction in frustrated Ising spin chain: Monte Carlo simulation. <i>Journal of Applied Physics</i> , 2009 , 105, 033907	2.5	14	
268	Dynamics and scaling of low-frequency hysteresis loops in nanomagnets. <i>Physical Review B</i> , 2007 , 76,	3.3	14	
267	Piezoelectricity and ferroelectric cluster size in relaxor ferroelectrics. <i>Applied Physics Letters</i> , 2007 , 91, 092908	3.4	14	
266	Fabrication of high-density BiFeO nanodot and anti-nanodot arrays by anodic alumina template-assisted ion beam etching. <i>Nanotechnology</i> , 2016 , 27, 485302	3.4	14	
265	Strain-mediated electric manipulation of magnetic skyrmion and other topological states in geometric confined nanodiscs. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 014007	3	14	
264	Electric field driven evolution of topological domain structure in hexagonal manganites. <i>Physical Review B</i> , 2017 , 96,	3.3	13	
263	A flexible memory with low-voltage and high-operation speed using an Al2O3/poly(Emethylstyrene) gate stack on a muscovite substrate. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 1913-1918	7.1	13	
262	Phase transition and phase separation in multiferroic orthorhombic Dy(1-x)Ho(x)MnO3 (0 松和). Scientific Reports, 2014 , 4, 6506	4.9	13	
261	Multiferroics: a beautiful but challenging multi-polar world. <i>National Science Review</i> , 2019 , 6, 620	10.8	13	
260	Effects of active species on degrading A-ring of tetracycline in the Z-scheme heterostructured core-shell La(OH)3@BaTiO3 composition. <i>Journal of Alloys and Compounds</i> , 2019 , 804, 100-110	5.7	13	
259	Experimental observations of ferroelectricity in double pyrochlore Dy2Ru2O7. <i>Frontiers of Physics</i> , 2014 , 9, 82-89	3.7	13	
258	Grain size effect on GdFeO3-type lattice distortion and ferroelectric behavior in DyMnO3. <i>Physica B: Condensed Matter</i> , 2012 , 407, 3736-3739	2.8	13	
257	Monte Carlo simulation on ferroelectric response to magnetic field in an elastic Ising spin chain. <i>Journal of Applied Physics</i> , 2009 , 106, 013903	2.5	13	
256	Significant enhancement of magnetoelectric output in multiferroic heterostructural films modulated by electric polarization cycles. <i>Applied Physics Letters</i> , 2010 , 96, 152902	3.4	13	
255	Direct growth of vertically aligned ReSe nanosheets on conductive electrode for electro-catalytic	9.3	12	
	hydrogen production. <i>Journal of Colloid and Interface Science</i> , 2019 , 553, 699-704	9.0		
254		9.5	12	

252	Room Temperature Fabrication of High Quality ZrO2 Dielectric Films for High Performance Flexible Organic Transistor Applications. <i>IEEE Electron Device Letters</i> , 2018 , 39, 280-283	4.4	12
251	Brownian motion and entropic torque driven motion of domain walls in antiferromagnets. <i>Physical Review B</i> , 2018 , 97,	3.3	12
250	Ferrielectricity in DyMn2O5: A golden touchstone for multiferroicity of RMn2O5 family. <i>Journal of Advanced Dielectrics</i> , 2015 , 05, 1530003	1.3	12
249	Self-assembled nanoscale capacitor cells based on ultrathin BiFeO3 films. <i>Applied Physics Letters</i> , 2014 , 104, 182903	3.4	12
248	Giant room-temperature magnetocapacitance in Co2+ doped SnO2 dielectric films. <i>Applied Physics Letters</i> , 2009 , 95, 152901	3.4	12
247	Influence of Co:Mn ratio on multiferroicity of Ca3Co2⊠MnxO6 around x~1. <i>Applied Physics Letters</i> , 2010 , 97, 032901	3.4	12
246	Strain engineering of epitaxial oxide heterostructures beyond substrate limitations. <i>Matter</i> , 2021 , 4, 1323-1334	12.7	12
245	An electroforming-free, analog interface-type memristor based on a SrFeOx epitaxial heterojunction for neuromorphic computing. <i>Materials Today Physics</i> , 2021 , 18, 100392	8	12
244	Hybrid solar cells using solution-processed TiO2/Sb2S3 bilayer as electron transport layer. <i>Solar Energy</i> , 2016 , 133, 103-110	6.8	12
243	Rapid Microwave-Assisted Synthesis of SnO2 Quantum Dots for Efficient Planar Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1887-1893	6.1	12
242	Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects. <i>Nature Communications</i> , 2021 , 12, 1306	17.4	12
241	Powerful inner/outer controlled multi-target magnetic nanoparticle drug carrier prepared by liquid photo-immobilization. <i>Scientific Reports</i> , 2014 , 4, 4990	4.9	11
240	From Unipolar, WORM-Type to Ambipolar, Bistable Organic Electret Memory Device by Controlling Minority Lateral Transport. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901320	6.4	11
239	Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy. <i>Nanoscale Research Letters</i> , 2016 , 11, 318	5	11
238	Tunable resistive switching behaviour in ferroelectric InO bilayer films. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 165304	3	11
237	Magnetic behaviors of classical spin model on the ShastryButherland lattice: Monte Carlo simulation. <i>Journal of Applied Physics</i> , 2011 , 109, 07E103	2.5	11
236	Enhanced Ferroelectric Properties and Insulator-Metal Transition-Induced Shift of Polarization-Voltage Hysteresis Loop in VO-Capped HfZrO Thin Films. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 40510-40517	9.5	11
235	Two-Step Antiferromagnetic Transitions and Ferroelectricity in Spin-1 Triangular-Lattice Antiferromagnetic Sr3NiTa2O9. <i>Inorganic Chemistry</i> , 2016 , 55, 2709-16	5.1	11

(2020-2016)

234	Induced SERS activity in Ag@SiO2/Ag core-shell nanosphere arrays with tunable interior insulator. Journal of Raman Spectroscopy, 2016 , 47, 1200-1206	2.3	11
233	Interactions of charged domain walls and oxygen vacancies in BaTiO3: a first-principles study. <i>Materials Today Physics</i> , 2018 , 6, 9-21	8	10
232	Helical and skyrmion lattice phases in three-dimensional chiral magnets: Effect of anisotropic interactions. <i>Scientific Reports</i> , 2017 , 7, 7392	4.9	10
231	Enhanced Magnetodielectric Effect in Graded CoFe2O4/Pb(Zr0.52Ti0.48)O3 Particulate Composite Films. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 1450-1455	3.8	10
230	Reversing ferroelectric polarization in multiferroic DyMn2O5 by nonmagnetic Al substitution of Mn. <i>Journal of Applied Physics</i> , 2014 , 116, 054104	2.5	10
229	Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature. <i>Science Bulletin</i> , 2022 ,	10.6	10
228	Ferroelastically protected polarization switching pathways to control electrical conductivity in strain-graded ferroelectric nanoplates. <i>Physical Review Materials</i> , 2018 , 2,	3.2	10
227	Flexible asymmetric supercapacitors based on NiCo2O4 in a neutral electrolyte achieving 2.4 voltage window. <i>Journal of Alloys and Compounds</i> , 2021 , 860, 158346	5.7	10
226	Nondestructive Transfer Strategy for High-Efficiency Flexible Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 47003-47007	9.5	10
225	A tunable palladium nanoparticle film-based strain sensor in a Mott variable-range hopping regime. <i>Sensors and Actuators A: Physical</i> , 2018 , 272, 161-169	3.9	9
224	Spatial anisotropy of topological domain structure in hexagonal manganites. <i>Physical Review B</i> , 2017 , 95,	3.3	9
223	High performance organic nonvolatile memory transistors based on HfO2 and poly(Hmethylstyrene) electret hybrid charge-trapping layers. <i>Applied Physics Letters</i> , 2017 , 111, 063302	3.4	9
222	Inorganic Solar Cells Based on Electrospun ZnO Nanofibrous Networks and Electrodeposited Cu2O. <i>Nanoscale Research Letters</i> , 2015 , 10, 465	5	9
221	Negative magnetodielectric effect in CaCu3Ti4O12. <i>Journal of Applied Physics</i> , 2013 , 114, 234104	2.5	9
220	Role of long-range elastic energy in relaxor ferroelectrics. <i>Applied Physics Letters</i> , 2006 , 89, 092909	3.4	9
219	Dynamics of spacing selection of a lamellar eutectic during directional solidification. <i>Materials Science & Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1992 , 157, 73-78	5.3	9
218	Quaternary compounds Ag2XYSe4 ($X = Ba$, Sr ; $Y = Sn$, Ge) as novel potential thermoelectric materials. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 115302	3	9
217	Magnetism and spin exchange coupling in strained monolayer CrOCl. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 17255-17262	3.6	9

216	Enhancing photoelectrochemical performance of the BiMoO photoanode by ferroelectric polarization regulation. <i>Nanoscale</i> , 2020 , 12, 18446-18454	7.7	9
215	Highly Controllable and Silicon-Compatible Ferroelectric Photovoltaic Synapses for Neuromorphic Computing. <i>IScience</i> , 2020 , 23, 101874	6.1	9
214	External field effects on aging phenomenon of acceptor-doped BaTiO3 ceramics. <i>AIP Advances</i> , 2015 , 5, 097107	1.5	8
213	Nonvolatile Electric-Optical Memory Controlled by Conductive Filaments in Ti-Doped BiFeO3. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700551	6.4	8
212	Continuous Magnetoelectric Control in Multiferroic DyMnO3 Films with Twin-like Domains. <i>Scientific Reports</i> , 2016 , 6, 20175	4.9	8
211	Kinetics of 90 [°] Idomain wall motions and high frequency mesoscopic dielectric response in strained ferroelectrics: a phase-field simulation. <i>Scientific Reports</i> , 2014 , 4, 5007	4.9	8
210	The apoptosis of OVCAR-3 induced by TNF-plus IFN-po-immobilized polylactic acid copolymers. Journal of Materials Chemistry, 2012 , 22, 14746		8
209	Magnetization oscillation in a nanomagnet driven by a self-controlled spin-polarized current: Nonlinear stability analysis. <i>Physical Review B</i> , 2007 , 76,	3.3	8
208	Enhanced piezoelectric effect of relaxor ferroelectrics in nonpolar direction. <i>Applied Physics Letters</i> , 2007 , 90, 062905	3.4	8
207	Presence of a purely tetragonal phase in ultrathin BiFeO3 films: Thermodynamics and phase-field simulations. <i>Acta Materialia</i> , 2020 , 183, 110-117	8.4	8
206	Fluorinated interfacial layers in perovskite solar cells: efficient enhancement of the fill factor. Journal of Materials Chemistry A, 2020 , 8, 16527-16533	13	8
205	High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3. <i>Scientific Reports</i> , 2016 , 6, 27840	4.9	8
204	Tuning the photovoltaic effect of multiferroic CoFe2O4/Pb(Zr, Ti)O3 composite films by magnetic fields. <i>Applied Physics Letters</i> , 2016 , 108, 222902	3.4	8
203	Highly Reproducible Fabrication of Perovskite Films with an Ultrawide Antisolvent Dripping Window for Large-Scale Flexible Solar Cells. <i>Solar Rrl</i> , 2021 , 5, 2000646	7.1	8
202	Emergent strain engineering of multiferroic BiFeO3 thin films. <i>Journal of Materiomics</i> , 2021 , 7, 281-294	6.7	8
201	Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision <i>Nature Communications</i> , 2022 , 13, 1707	17.4	8
200	BiFeO3 nanorings synthesized via AAO template-assisted pulsed laser deposition and ion beam etching. <i>RSC Advances</i> , 2017 , 7, 41210-41216	3.7	7
199	Bioinspired High-Adhesion Metallic Networks as Flexible Transparent Conductors. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900056	6.8	7

(2018-2019)

198	Depolarization-Field-Induced Retention Loss in Ferroelectric Diodes. <i>Physical Review Applied</i> , 2019 , 11,	4.3	7
197	One-Step Mask Etching Strategy Toward Ordered Ferroelectric Pb(Zr0.52Ti 0.48)O 3 Nanodot Arrays. <i>Nanoscale Research Letters</i> , 2015 , 10, 1028	5	7
196	Enhanced performance and stability of ambient-processed CH3NH3PbI3-x(SCN)x planar perovskite solar cells by introducing ammonium salts. <i>Applied Surface Science</i> , 2020 , 513, 145790	6.7	7
195	Ultrathin MoS-coated Ag@Si nanosphere arrays as an efficient and stable photocathode for solar-driven hydrogen production. <i>Nanotechnology</i> , 2018 , 29, 105402	3.4	7
194	Efficient hydrogen evolution catalyzed by amorphous molybdenum sulfide/N-doped active carbon hybrid on carbon fiber paper. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 15135-15143	6.7	7
193	Cell death in HeLa mediated by thermoplastic polyurethane with co-immobilized IFN-[þlus TNF-[] Acta Biomaterialia, 2012 , 8, 1348-56	10.8	7
192	Anomalous phase separation in La0.225Pr0.4Ca0.375MnO3: consequence of temperature and magnetic-field cycles. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 104, 471-476	2.6	7
191	Nonvolatile ferroelectric domain wall memory embedded in complex topological domain structure <i>Advanced Materials</i> , 2022 , e2107711	24	7
190	Microstructure defects mediated charge transport in Nb-doped epitaxial BaTiO3thin films. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 175302	3	7
189	Field-Free Manipulation of Skyrmion Creation and Annihilation by Tunable Strain Engineering. <i>Advanced Functional Materials</i> , 2021 , 31, 2008715	15.6	7
188	Self-Organized Ferroelectric Domains Controlled by a Constant Bias from the Atomic Force Microscopy Tip. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 40911-40917	9.5	7
187	Dynamics of distorted skyrmions in strained chiral magnets. <i>New Journal of Physics</i> , 2018 , 20, 063050	2.9	7
186	Stretchable and self-healable hydrogel artificial skin. National Science Review,	10.8	7
185	Magnetism and hybrid improper ferroelectricity in LaMO/YMO superlattices. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 20132-20136	3.6	6
184	Real-space anisotropic dielectric response in a multiferroic skyrmion lattice. <i>Scientific Reports</i> , 2015 , 5, 8318	4.9	6
183	Temperature dependences of ferroelectricity and resistive switching behavior of epitaxial BiFe O 3 thin films. <i>Chinese Physics B</i> , 2015 , 24, 107705	1.2	6
182	Nanoscale Phase Mixture and Multifield-Induced Topotactic Phase Transformation in SrFeO. <i>ACS Applied Materials & District Applied & D</i>	9.5	6
181	Revisiting the phase transitions in BaxSr1-xTiO3 at low doping range (x0.1). <i>Journal of Alloys and Compounds</i> , 2018 , 749, 276-282	5.7	6

180	Understanding the multiferroicity in TmMnO by a magnetically induced ferrielectric model. <i>Scientific Reports</i> , 2016 , 6, 34767	4.9	6
179	Enhanced performance of planar perovskite solar cells based on low-temperature processed TiO2 electron transport layer modified by Li2SiO3. <i>Journal of Power Sources</i> , 2018 , 392, 1-7	8.9	6
178	Ultrafast depinning of domain walls in notched antiferromagnetic nanostructures. <i>Physical Review B</i> , 2019 , 100,	3.3	6
177	Polarization tunable and enhanced photovoltaic properties in tetragonal-like BiFeO3 epitaxial films with graphene top electrode. <i>Journal of Alloys and Compounds</i> , 2019 , 811, 152013	5.7	6
176	Magnetic orders in pnictide superconductors: the effect of biquadratic interaction. <i>New Journal of Physics</i> , 2014 , 16, 053027	2.9	6
175	Stripe-vortex transitions in ultrathin magnetic nanostructures. <i>Journal of Applied Physics</i> , 2013 , 113, 054	13.152	6
174	Domain structures in circular ferroelectric nano-islands with charged defects: A Monte Carlo simulation. <i>Journal of Applied Physics</i> , 2017 , 122, 044103	2.5	6
173	Enhanced nematic and antiferromagnetic phases in the spin-fermion model for strained iron pnictides. <i>New Journal of Physics</i> , 2015 , 17, 013011	2.9	6
172	Multiferroic domain structure in orthorhombic multiferroics of cycloidal spin order: Phase field simulations. <i>Applied Physics Letters</i> , 2012 , 101, 042908	3.4	6
171	Immobilizing bifenthrin on wood for termite control. <i>International Biodeterioration and Biodegradation</i> , 2011 , 65, 389-395	4.8	6
170	Enhanced ferroelectricity in orthorhombic manganites Gd1\(\mathbb{H}\) HoxMnO3. <i>Journal of Applied Physics</i> , 2011 , 109, 07D901	2.5	6
169	Vertically conductive MoS2 pyramids with a high density of active edge sites for efficient hydrogen evolution. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 3017-3022	7.1	6
168	Enhanced charge transport in ReSe-based 2D/3D electrodes for efficient hydrogen evolution reaction. <i>Chemical Communications</i> , 2019 , 56, 305-308	5.8	6
167	Plasmonic refraction-induced ultrahigh transparency of highly conducting metallic networks. <i>Laser and Photonics Reviews</i> , 2016 , 10, 465-472	8.3	6
166	Phase transitions in BiFeO3 nanoislands with enhanced electromechanical response. <i>Ceramics International</i> , 2018 , 44, 21725-21729	5.1	6
165	Manipulating the magnetism and resistance state of Mn:ZnO/Pb(Zr0.52Ti0.48)O3 heterostructured films through electric fields. <i>Applied Physics Letters</i> , 2018 , 112, 212902	3.4	6
164	Oxygen vacancy mediated conductivity and charge transport properties of epitaxial Ba0.6La0.4TiO3lthin films. <i>Applied Physics Letters</i> , 2019 , 114, 202902	3.4	5
163	Effects of phase structure on up-conversion photoluminescence and dielectric performance in Er3+ doped (Bi0. 5Na0. 5)TiO3-BaTiO3 lead-free ceramics. <i>Journal of Alloys and Compounds</i> , 2019 , 801, 619-6	25 ⁷	5

(2019-2020)

-	162	Suppression of vortexIntivortex structures by anti-trimer point defects in hexagonal manganites. Journal of Applied Physics, 2020 , 127, 194106	2.5	5	
	161	Antiferromagnetism of Double Molybdate LiFe(MoO). <i>Inorganic Chemistry</i> , 2020 , 59, 8127-8133	5.1	5	
-	160	Oxygen incorporated solution-processed high-La2O3 dielectrics with large-area uniformity, low leakage and high breakdown field comparable with ALD deposited films. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 5163-5173	7.1	5	
	159	Unique nano-domain structures in self-assembled BiFeOland Pb(Zr,Ti)Olferroelectric nanocapacitors. <i>Nanotechnology</i> , 2016 , 27, 015703	3.4	5	
	158	Microwave fields driven domain wall motions in antiferromagnetic nanowires. <i>New Journal of Physics</i> , 2018 , 20, 063003	2.9	5	
5	157	The J = 1/2 Antiferromagnet Sr IrO : A Golden Avenue toward New Physics and Functions. <i>Advanced Materials</i> , 2020 , 32, e1904508	24	5	
-	156	Thickness dependence of domain size in 2D ferroelectric CuInP2S6 nanoflakes. <i>AIP Advances</i> , 2019 , 9, 115211	1.5	5	
1	155	Fabrication of epitaxial ferroelectric BiFeO3 nanoring structures by a two-step nano-patterning method. <i>Ceramics International</i> , 2017 , 43, 16136-16140	5.1	5	
1	154	Enhanced ferromagnetism, metal-insulator transition, and large magnetoresistance in La1\(\mathbb{L}\)CaxMn1\(\mathbb{R}\)RuxO3 free of eg-orbital double-exchange. <i>Journal of Applied Physics</i> , 2014 , 115, 123904	2.5	5	
1	153	Size-dependent structural preferences and magnetization enhancement in 0.5Bi0.8La0.2FeO3D.5PbTiO3. <i>Journal of Applied Physics</i> , 2010 , 108, 124108	2.5	5	
-	152	Dynamic hysteresis for Potts spin system: a Monte Carlo simulation. <i>Applied Physics A: Materials Science and Processing</i> , 2000 , 70, 113-120	2.6	5	
-	151	Dynamics of decomposition of CuCo alloys at the spinodal point. <i>Journal of Materials Science Letters</i> , 1994 , 13, 1699-1702		5	
1	150	Li-ion intercalation enhanced ferromagnetism in van der Waals Fe3GeTe2 bilayer. <i>Applied Physics Letters</i> , 2021 , 119, 012405	3.4	5	
-	149	Self-electroforming and high-performance complementary memristor based on ferroelectric tunnel junctions. <i>Applied Physics Letters</i> , 2016 , 109, 053506	3.4	5	
-	148	Antiferroelectric polarization switching and dynamic scaling of energy storage: A Monte Carlo simulation. <i>Journal of Applied Physics</i> , 2016 , 119, 174103	2.5	5	
-	147	Disorder-insensitivity of room-temperature giant permittivity in Ca4 lkCuxTi4O12 (x = 3, 2 and 1) polycrystalline ceramics. <i>Journal of Applied Physics</i> , 2019 , 126, 224102	2.5	5	
-	146	Large magnetoelectric effect in the polar magnet Sm2BaCuO5. Applied Physics Letters, 2019, 115, 2529	03.4	5	
	145	Magnetoelectric couplings in high-density array of nanoscale Co/BiFeO3 multiferroic heterostructures. <i>Applied Physics Letters</i> , 2019 , 114, 012901	3.4	5	

144	Ultra-high piezoelectric coefficients and strain-sensitive Curie temperature in hydrogen-bonded systems. <i>National Science Review</i> , 2021 , 8, nwaa203	10.8	5
143	Wood-derived electrode supporting CVD-grown ReS2 for efficient and stable hydrogen production. <i>Journal of Materials Science</i> , 2021 , 56, 1551-1560	4.3	5
142	Emerging phenomena from exotic ferroelectric topological states. APL Materials, 2021, 9, 020907	5.7	5
141	Enhanced energy storage performance and thermal stability in relaxor ferroelectric (1-x)BiFeO3-x(0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3) ceramics. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 2646-2654	3.8	5
140	Ferroelectrics in Photocatalysis 2018 , 265-309		5
139	Enhanced ferroelectric polarization with less wake-up effect and improved endurance of Hf0.5Zr0.5O2 thin films by implementing W electrode. <i>Journal of Materials Science and Technology</i> , 2022 , 104, 1-7	9.1	5
138	Magnetic phase transition and multiferroic phase separation in Ho1-xGdxMnO3. <i>Ceramics International</i> , 2019 , 45, 8325-8332	5.1	4
137	Geometric and anisotropy effects on voltage driven magnetic switching behaviors in nanoscale multiferroic heterostructure. <i>AIP Advances</i> , 2019 , 9, 045101	1.5	4
136	MnO2-doping induced enhanced multiferroicity in Bi0.83Sm0.17Fe0.95Sc0.05O3 ceramics. <i>Applied Physics Letters</i> , 2020 , 116, 152901	3.4	4
135	Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites. <i>Journal of Applied Physics</i> , 2018 , 123, 094102	2.5	4
134	Persistent Large Anisotropic Magnetoresistance and Insulator-to-Metal Transition in Spin-Orbit-Coupled Sr2(Ir1\(\mathbb{I} \)Gax)O4 for Antiferromagnetic Spintronics. <i>Physical Review Applied</i> , 2018 , 10,	4.3	4
133	New iron-based multiferroics with improper ferroelectricity. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 243002	3	4
132	Lamellar NiMoCo@CuS enabling electrocatalytic activity and stability for hydrogen evolution. <i>Chemical Communications</i> , 2019 , 55, 10555-10558	5.8	4
131	Influence of strain on optical properties of multiferroic EuTiO3 film: A first-principles investigation. <i>Journal of Applied Physics</i> , 2017 , 122, 194102	2.5	4
130	Manipulating the ferromagnetism in narrow-bandwidth Pr1-xCaxMnO3 (0 /k /D.6) by means of the Mn-Ru t2g ferromagnetic super-exchanges. <i>Journal of Applied Physics</i> , 2015 , 118, 123901	2.5	4
129	Manipulation of Dy-Mn coupling and ferrielectric phase diagram of DyMn2O5: The effect of Y substitution of Dy. <i>Journal of Applied Physics</i> , 2015 , 118, 174105	2.5	4
128	Anisotropic manipulation of ferroelectric polarization in SrTiO3/(Co0.9Zn0.1)Fe2O4 heterostructural films by magnetic field. <i>Journal of Applied Physics</i> , 2014 , 115, 044102	2.5	4
127	Mean-field theory of ferroelectricity in Sr1⊠CaxTiO3 (0?x?0.4). <i>Physical Review B</i> , 2012 , 86,	3.3	4

126	Spacing selection for an Sn?Pb lamellar eutectic during directional solidification. <i>Materials Science</i> & Structural Materials: Properties, Microstructure and Processing, 1993, 167, 87-96	5.3	4
125	Understanding the effect of antisolvent on processing window and efficiency for large-area flexible perovskite solar cells. <i>Materials Today Physics</i> , 2021 , 21, 100565	8	4
124	Conductivity, charge transport, and ferroelectricity of La-doped BaTiO3 epitaxial thin films. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 025301	3	4
123	Novel D-A-D type small-molecular hole transport materials for stable inverted perovskite solar cells. <i>Organic Electronics</i> , 2021 , 92, 106102	3.5	4
122	STAT6 deficiency ameliorates GravesLdisease severity by suppressing thyroid epithelial cell hyperplasia. <i>Cell Death and Disease</i> , 2016 , 7, e2506	9.8	4
121	Boosting the performance of low-temperature processed CsPbI2Br planar perovskite solar cells by interface engineering. <i>Dyes and Pigments</i> , 2021 , 186, 109024	4.6	4
120	Two-level hierarchical stripe domains and enhanced piezoelectricity of rapid hot-press sintered BiFeO3 ceramics. <i>Journal of Applied Physics</i> , 2018 , 124, 194104	2.5	4
119	Spontaneous Topological Magnetic Transitions in NdCo Rare-Earth Magnets. <i>Advanced Materials</i> , 2021 , 33, e2103751	24	4
118	The crucial role of Mn spiral spin order in stabilizing the Dy-Mn exchange striction in multiferroic DyMnO. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 3706-3712	3.6	3
117	Enhanced photovoltaic efficiency and persisted photoresponse switchability in LaVO3/Pb(Zr0.2Ti0.8)O3 perovskite heterostructures. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 12482-	12490	3
116	Electric field driven multi-state magnetization switching in triangular nanomagnets on piezoelectric substrate. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 295802	1.8	3
115	The 90 th domain splitting and electromechanical behaviors in ferroelectric thin films with triangle anti-dot array. <i>Computational Materials Science</i> , 2015 , 108, 301-308	3.2	3
114	Room-Temperature-Processed ZrO2 Interlayer toward Efficient Planar Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 3328-3336	6.1	3
113	Stability of multiferroicity against Dy/Mn off-stoichiometry in DyMnO3. <i>Journal of Applied Physics</i> , 2014 , 115, 17D911	2.5	3
112	Effect of dipoledipole interaction on self-control magnetization oscillation in double-domain nanomagnets. <i>Solid State Communications</i> , 2012 , 152, 561-565	1.6	3
111	Multiferroic Domain Structure in Orthorhombic Multiferroics of Cycloidal Spin Order: Three-Dimensional Phase Field Simulations. <i>IEEE Transactions on Magnetics</i> , 2013 , 49, 3117-3120	2	3
110	Domain splitting and enhanced piezoelectricity in ferroelectric thin films with square grid structure. <i>Europhysics Letters</i> , 2014 , 108, 27009	1.6	3
109	Electric field driven phase transition and possible twining quasi-tetragonal phase in compressively strained BiFeO3 thin films. <i>Frontiers of Physics</i> , 2012 , 7, 424-428	3.7	3

108	Multiferroic phase transitions in manganites R MnO 3 : A two-orbital double exchange simulation. <i>Chinese Physics B</i> , 2012 , 21, 107502	1.2	3
107	GIANT DIELECTRIC TUNABLE BEHAVIOR OF Pr-DOPED SrTiO3 AT LOW TEMPERATURE. Functional Materials Letters, 2012 , 05, 1250018	1.2	3
106	Controlled switching of the number of skyrmions in a magnetic nanodot by electric fields <i>Advanced Materials</i> , 2021 , e2107908	24	3
105	Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2020 , 69, 127706	0.6	3
104	Band structure, ferroelectric instability, and spinBrbital coupling effect of bilayer \(\text{\text{ln2Se3}}\). Journal of Applied Physics, 2020 , 128, 234106	2.5	3
103	Strain effects on conductivity and charge transport in La-doped BaTiO3 thin films. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 075305	3	3
102	Remarkable magnetoelectric effect in single crystals of honeycomb magnet Mn4Nb2O9. <i>Applied Physics Letters</i> , 2020 , 117, 072903	3.4	3
101	Magnetoelectric coupling in self-assembled BiFeO3©oFe2O4 nanocomposites on (110)-LaAlO3 substrates. <i>APL Materials</i> , 2021 , 9, 041109	5.7	3
100	4-Bromoaniline Passivation for Efficient and Stable All-Inorganic CsPbI2Br Planar Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2021 , 4, 5415-5423	6.1	3
99	Abnormal dependence of multiferroicity on high-temperature electro-poling in GdMn2O5. <i>Journal of Applied Physics</i> , 2019 , 126, 174104	2.5	3
98	Recycling by-products in new small molecular electrochromic materials with ultra bistability. <i>Dyes and Pigments</i> , 2019 , 162, 697-703	4.6	3
97	Direct evidence for the coexistence of nanoscale high-conduction and low-conduction phases in VO2 films. <i>Applied Physics Letters</i> , 2018 , 113, 173104	3.4	3
96	Improving stability and efficiency of perovskite solar cells via a cerotic acid interfacial layer. <i>Surfaces and Interfaces</i> , 2021 , 25, 101163	4.1	3
95	Additive Engineering in Antisolvent for Widening the Processing Window and Promoting Perovskite Seed Formation in Perovskite Solar Cells ACS Applied Materials & Description of the Processing Window and Promoting Perovskite Solar Cells ACS Applied Materials & Description of the Processing Window and Promoting Perovskite Solar Cells ACS Applied Materials & Description of the Processing Window and Promoting Perovskite Solar Cells ACS Applied Materials & Description of the Processing Window and Promoting Perovskite Solar Cells ACS Applied Materials & Description of the Processing Window and Promoting Perovskite Solar Cells ACS Applied Materials & Description of the Processing Window and Promoting Perovskite Solar Cells ACS Applied Materials & Description of the Processing Window and Promoting Perovskite Solar Cells ACS Applied Materials & Description of the Processing Window and Promoting Perovskite Solar Cells ACS Applied Materials & Description Office Perovskite Solar Cells ACS Applied Materials & Description Office Perovskite Solar Cells ACS Applied Materials & Description Office Perovskite Perovskit	9.5	3
94	Superior energy storage of sandwiched PVDF films by separate introduction of core-shell Ag@BT nanoparticles and 2D MXene nanosheets. <i>Ceramics International</i> , 2022 ,	5.1	3
93	A bio-inspired 3D quasi-fractal nanostructure for an improved oxygen evolution reaction. <i>Chemical Communications</i> , 2019 , 55, 357-360	5.8	2
92	Unusual tunability of multiferroicity in GdMn 2 O 5 by electric field poling far above multiferroic ordering point. <i>Chinese Physics B</i> , 2019 , 28, 027502	1.2	2
91	Tunable magnetic helicity in Mn1⊠FexGe: A Monte Carlo simulation. <i>Journal of Applied Physics</i> , 2015 , 117, 17C750	2.5	2

(2016-2019)

90	Recyclable and Flexible Starch-Ag Networks and Its Application in Joint Sensor. <i>Nanoscale Research Letters</i> , 2019 , 14, 127	5	2	
89	The Ir4+ substitution dependence of electric polarization as a probe of magnetic phase stability in multiferroic MnWO4. <i>Journal of Applied Physics</i> , 2019 , 126, 064103	2.5	2	
88	The interaction of multifold polar orderings in Ba-doped Sr0.7Ca0.3TiO3. <i>Materials Research Bulletin</i> , 2012 , 47, 1316-1322	5.1	2	
87	Critical exponents of ferroelectric transitions in modulated SrTiO3: Consequences of quantum fluctuations and quenched disorder. <i>Chinese Physics B</i> , 2013 , 22, 077701	1.2	2	
86	Phase transitions in classical biquadratic Heisenberg model for strained iron pnictides. <i>Journal of Applied Physics</i> , 2015 , 117, 17E302	2.5	2	
85	Anisotropy modulated stepwise magnetization in triangular Heisenberg antiferromagnet. <i>Journal of Magnetism and Magnetic Materials</i> , 2011 , 323, 3276-3280	2.8	2	
84	Minimal switching voltage for magnetization reversals in asymmetric nanorings. <i>Journal of Magnetism and Magnetic Materials</i> , 2009 , 321, 3698-3701	2.8	2	
83	The role of dipoledipole interaction in modulating the step-like magnetization of Ca3Co2O6. Journal of Applied Physics, 2012, 111, 07E133	2.5	2	
82	Precipitation in binary alloys with anisotropic interaction: a Monte-Carlo approach. <i>Journal of Materials Science Letters</i> , 1995 , 14, 1734-1737		2	
81	Dynamic scaling of phase separation in CuCo alloys. <i>Journal of Materials Science</i> , 1996 , 31, 2807-2818	4.3	2	
80	Significant Modulation of Ferroelectric Photovoltaic Behavior by a Giant Macroscopic Flexoelectric Effect Induced by Strain-Relaxed Epitaxy. <i>Advanced Electronic Materials</i> ,2100612	6.4	2	
79	Complex center-type topological domain in ferroelectric nanoislands of rhombohedral Pb(Zr0.7,Ti0.3)O3. <i>Journal of Applied Physics</i> , 2020 , 128, 224103	2.5	2	
78	Experimental observation of ferroelectricity in ferrimagnet MnCr2S4. <i>Applied Physics Letters</i> , 2020 , 117, 032903	3.4	2	
77	Coexistence of multiple morphotropic phase boundaries in strained La-doped BiFeO3 thin films. <i>Materials Today Physics</i> , 2021 , 17, 100345	8	2	
76	Stability phase diagrams and tuning of magnetic skyrmionium and other states. <i>Journal of Magnetism and Magnetic Materials</i> , 2021 , 526, 167706	2.8	2	
75	A structural perspective on giant permittivity CaCu3Ti4O12: One way to quantum dielectric physics in solids. <i>Open Ceramics</i> , 2021 , 6, 100126	3.3	2	
74	Reproducible resistive switching in the super-thin Bi2FeCrO6 epitaxial film with SrRuO3 bottom electrode. <i>Applied Physics Letters</i> , 2016 , 109, 152903	3.4	2	
73	Manipulating the exchange bias effect of Pb(Zr0.52Ti0.48)O3/CoFe2O4/NiO heterostructural films by electric fields. <i>Applied Physics Letters</i> , 2016 , 109, 172904	3.4	2	

72	Inexpensive transparent nanoelectrode for crystalline silicon solar cells. <i>Nanoscale Research Letters</i> , 2016 , 11, 312	5	2
71	High-efficient smart windows enabled by self-forming fractal networks and electrophoresis of core-shell TiO2@SiO2 particles. <i>Energy and Buildings</i> , 2021 , 232, 110657	7	2
70	Metamagnetic transitions and magnetoelectricity in the spin-1 honeycomb antiferromagnet Ni2Mo3O8. <i>Physical Review B</i> , 2021 , 103,	3.3	2
69	Enhancement of electrical properties of solution-processed oxide thin film transistors using ZrO2 gate dielectrics deposited by an oxygen-doped solution. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 125	5}101	2
68	Magnetoelectric mutual-control in collinear antiferromagnetic NdCrTiO5. <i>Applied Physics Letters</i> , 2018 , 113, 122903	3.4	2
67	Reversible Ionic Polarization in Metal Halide Perovskites. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 283	- 3.8 9	2
66	A Mixed Antisolvent-Assisted Crystallization Strategy for Efficient All-Inorganic CsPbIBr2 Perovskite Solar Cells by a Low-Temperature Process. <i>ACS Applied Energy Materials</i> , 2022 , 5, 2881-2889	6.1	2
65	Controllable Coercive Field of Ferroelectric HfOlFilms via UV-Ozone Surface Modification. <i>IEEE Transactions on Electron Devices</i> , 2022 , 1-6	2.9	2
64	Impulse voltage control of continuously tunable bipolar resistive switching in Pt/Bi0.9Eu0.1FeO3/Nb-doped SrTiO3 heterostructures. <i>Applied Physics A: Materials Science and Processing</i> , 2017 , 123, 1	2.6	1
63	Magnetic and ferroelectric orders in strained Gd1/2Na1/2TiO3: First-principles calculations. <i>Journal of Applied Physics</i> , 2015 , 117, 17C742	2.5	1
62	Modulated multiferroic phases and electric polarization in Mn1\(\mathbb{R}\)RuxWO4+\(\mathbb{I}\)Journal of Applied Physics, 2015 , 117, 17D912	2.5	1
61	Electro-opto-mechano driven reversible multi-state memory devices based on photocurrent in BiEuFeO/LaSrMnO/PMN-PT heterostructures <i>RSC Advances</i> , 2020 , 10, 15784-15793	3.7	1
60	Absence of piezoelectric enhancement around the morphotropic phase boundaries for Bi1\(\text{B}\) NdxFeO3 ceramics. <i>AIP Advances</i> , 2020 , 10, 065329	1.5	1
59	Hall voltage reversal and structural phase transition in VO2 thin films. <i>Applied Physics Letters</i> , 2020 , 116, 082106	3.4	1
58	Electronic phase engineering induced thermoelectric enhancement in manganites. <i>Journal of Applied Physics</i> , 2018 , 124, 034501	2.5	1
57	Influence of cycling electric polarization on multiferroic behaviors in heterostructural films composed of ferroelectric and ferromagnetic oxides. <i>Applied Physics A: Materials Science and Processing</i> , 2013 , 113, 477-482	2.6	1
56	Dynamics of directional coarsening in binary alloys: Monte-Carlo simulation. <i>Journal of Materials Science</i> , 1997 , 32, 1765-1773	4.3	1
55	Dynamics of phase separation in alloys with internal elastic energy: a Monte Carlo approach. <i>Materials Letters</i> , 1996 , 28, 189-195	3.3	1

54	Stability and low-energy orientations of interphase boundaries in multiaxial ferroelectrics: Phase-field simulations. <i>Physical Review B</i> , 2022 , 105,	3.3	1
53	Development and Prospects of Halide Perovskite Single Crystal Films. Advanced Electronic Materials, 21	0 6 980	1
52	Interface scattering dominated carrier transport in hysteresis-free amorphous InGaZnO thin film transistors with high-k HfAlO gate dielectrics by atom layer deposition. <i>Semiconductor Science and Technology</i> ,	1.8	1
51	Strain Engineering of Epitaxial Oxide Heterostructures Beyond Substrate Limitations. <i>SSRN Electronic Journal</i> ,	1	1
50	Electric Field-Driven Rotation of Magnetic Vortex Originating from Magnetic Anisotropy Reorientation. <i>Advanced Electronic Materials</i> ,2100561	6.4	1
49	Universal substrate growth of Ag-modified ReS2 as visible-light-driven photocatalyst for highly efficient water disinfection. <i>Chemical Engineering Journal</i> , 2022 , 430, 132918	14.7	1
48	Strain-tuned optical property in magnetoelectric LiFe5O8 thin film. <i>Journal of Alloys and Compounds</i> , 2020 , 821, 153199	5.7	1
47	Effect of nonmagnetic substituent Zn on the phase competition and multiferroic properties in the polar magnet Fe2Mo3O8. <i>Applied Physics Letters</i> , 2021 , 118, 112901	3.4	1
46	Anisotropic spin-driven ferroelectricity and magnetoelectric effect in a Y-type hexaferrite. <i>Applied Physics Letters</i> , 2021 , 118, 142902	3.4	1
45	High-La2O3 as an anode modifier to reduce leakage current for efficient perovskite solar cells. <i>Surfaces and Interfaces</i> , 2021 , 24, 101102	4.1	1
44	Control of large linear magnetoelectricity in Co3NiNb2O9. <i>Journal of Materiomics</i> , 2021 , 7, 810-814	6.7	1
43	Quantitative estimation of inter-dipole interaction energy in giant-permittivity CaCu3Ti4O12 solid bulks. <i>AIP Advances</i> , 2019 , 9, 115108	1.5	1
42	Pressure effects on the structures and electronic properties of halide perovskite CsPbX (X = I, Br, Cl). <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 3479-3484	3.6	1
41	Extremely flat band in antiferroelectric bilayer \(\text{Hn2Se3}\) with large twist-angle. <i>New Journal of Physics</i> , 2021 , 23, 083019	2.9	1
40	Tuning the morphology and optoelectronic properties of AgBiI4 film through isopropanol treatment. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 5321-5327	7.1	1
39	Emergence of magnetic order and enhanced magnetoelectric coupling in Lu-doped Sm2BaCuO5. <i>Ceramics International</i> , 2022 , 48, 10244-10250	5.1	1
38	Disorder-induced broadening of the spin waves in the triangular-lattice quantum spin liquid candidate YbZnGaO4. <i>Physical Review B</i> , 2021 , 104,	3.3	1
37	High Energy Storage Performance in Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 -ZnO Hybrid Perovskite Solid Solution Thin Films. <i>Advanced Electronic Materials</i> ,2200243	6.4	1

36	Absence of ferroelectricity in double-perovskite Y2CoMnO6 single crystals. <i>Journal of Applied Physics</i> , 2019 , 126, 084102	2.5	0
35	Enhanced magnetism-generated ferroelectricity in highly frustrated Fe-doped Ho2Ti2O7. <i>Journal of Applied Physics</i> , 2015 , 117, 17D915	2.5	O
34	Electrocatalytic performance of ReS2 nanosheets in hydrogen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2021 , 47, 2293-2293	6.7	0
33	Low-cost and efficient hole transport materials based on 9-phenyl-9H-carbazole branch for perovskite solar cells. <i>Surfaces and Interfaces</i> , 2021 , 28, 101598	4.1	O
32	Strain-mediated voltage-controlled magnetic double-vortex states in elliptical nanostructures. Journal of Magnetism and Magnetic Materials, 2021 , 547, 168729	2.8	0
31	Monte Carlo study on domain wall dynamics of J1🏿2 triangular spin system. <i>Journal of Applied Physics</i> , 2020 , 128, 224106	2.5	O
30	Domain structure and multiferroic properties of epitaxial hexagonal ErMnO3 films. <i>Journal of Alloys and Compounds</i> , 2020 , 821, 153529	5.7	0
29	Tuning the large magnetoelectric coupling in Co4Nb2O9 with Mn substitution. <i>Ceramics International</i> , 2021 , 47, 14041-14047	5.1	O
28	A flexible adhesive with a conductivity of 5240 S/cm. Science Bulletin, 2021, 66, 657-660	10.6	0
27	Realization of tunable artificial synapse through ambipolar charge trapping in organic transistor with pentacene/poly(Hmethylstyrene) architecture. <i>Journal of Applied Physics</i> , 2021 , 129, 074903	2.5	O
26	Giant Bulk Photostriction of Lead Halide Perovskite Single Crystals. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 32263-32269	9.5	0
25	Permittivity order modulation by intrinsic dielectric coupling. AIP Advances, 2021, 11, 015354	1.5	O
24	Significantly enhanced interlayer ferromagnetic coupling in van der Waals Fe3GeTe2 bilayer by Be-ion intercalation. <i>Applied Physics Letters</i> , 2022 , 120, 073106	3.4	0
23	High-performance self-driven photodetectors based on self-polarized Bi0.9Eu0.1FeO3 / Nb-doped SrTiO3 p-n heterojunctions. <i>Journal of Alloys and Compounds</i> , 2022 , 165451	5.7	O
22	Tunable Linearity of Weight Update in Low Voltage Synaptic Transistors with Periodic High- k Laminates. <i>Advanced Electronic Materials</i> ,2200137	6.4	0
21	Quantitative calculations of polarizations arising from the symmetric and antisymmetric exchange strictions in Tm-doped GdMnO 3. <i>Chinese Physics B</i> , 2015 , 24, 037509	1.2	
20	In-plane magnetization behaviors in the Shastry-Sutherland system TbB4: Monte Carlo simulation. <i>Journal of Applied Physics</i> , 2015 , 117, 17C104	2.5	
19	Soft mode characteristics of up-up-down-down spin chains: The role of exchange interactions on lattice dynamics. <i>Journal of Applied Physics</i> , 2015 , 117, 17D920	2.5	

(2021-2015)

18	Ferroelectricity and competing interactions in Ho-deficient non-stoichiometric orthorhombic HoMnO3. <i>Journal of Applied Physics</i> , 2015 , 117, 17D903	2.5
17	Phase transition in orthorhombic perovskite Sm1\(\text{LuxMnO3}: Evidenced by the emergence of ferroelectric polarization. \(\text{Journal of Applied Physics, 2015}, 117, 17D913 \)	2.5
16	Unusual enhancement of multiferroicity in YMn2\text{\text{\text{ITixO5}}} due to ferroelectrically active TiO6 oxygen octahedral units. <i>Journal of Applied Physics</i> , 2015 , 117, 17D917	2.5
15	Abnormal colossal electroresistance in Ru-doped La0.225Pr0.4Ca0.375MnO3. <i>Journal of Applied Physics</i> , 2015 , 117, 17C722	2.5
14	Structural, magnetic, and dielectric properties of charge-order phases in manganite La(Ca0.8Sr0.2)2Mn2O7. <i>Journal of Applied Physics</i> , 2020 , 127, 104104	2.5
13	Multiferroicity in Perovskite Manganite Superlattice. <i>Communications in Theoretical Physics</i> , 2016 , 66, 244-248	2.4
12	Single-Phase Type-II Multiferroics. Series in Materials Science and Engineering, 2016, 99-137	
11	Cationic Vacancy Mediated Conductivity and Charge Transport in Non-Stoichiometric Epitaxial BaTi0.75Nb0.25O3 Films. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1900418	2.5
10	Structure function and dynamic scaling of CuCo alloys during phase separation. <i>Materials Letters</i> , 1996 , 26, 145-153	3-3
	Observation of magnetoelectric effect in the $S = 1/2$ spin chain compound CoSe2O5 single crystal.	
9	Applied Physics Letters, 2022 , 120, 052901	3.4
8		2.5
	Applied Physics Letters, 2022, 120, 052901 The equivalence of thermodynamic potentials for ferroelectric thin films. Journal of Applied Physics,	
	Applied Physics Letters, 2022, 120, 052901 The equivalence of thermodynamic potentials for ferroelectric thin films. Journal of Applied Physics, 2021, 130, 144103 Unusual enhancement of multiferroicity in YMn2\(\text{MTixO5}\) due to ferroelectrically active TiO6	2.5
8	Applied Physics Letters, 2022, 120, 052901 The equivalence of thermodynamic potentials for ferroelectric thin films. Journal of Applied Physics, 2021, 130, 144103 Unusual enhancement of multiferroicity in YMn2\(\text{VTixO5}\) due to ferroelectrically active TiO6 oxygen octahedral units. Journal of Applied Physics, 2015, 117, 17D923	2.5
876	Applied Physics Letters, 2022, 120, 052901 The equivalence of thermodynamic potentials for ferroelectric thin films. Journal of Applied Physics, 2021, 130, 144103 Unusual enhancement of multiferroicity in YMn2\(\text{MTixO5}\) due to ferroelectrically active TiO6 oxygen octahedral units. Journal of Applied Physics, 2015, 117, 17D923 Deviation from universal dielectric response in CaCu3Ti4O12. AIP Advances, 2021, 11, 035124 Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial	2.5 2.5 1.5
8 7 6	Applied Physics Letters, 2022, 120, 052901 The equivalence of thermodynamic potentials for ferroelectric thin films. Journal of Applied Physics, 2021, 130, 144103 Unusual enhancement of multiferroicity in YMn2\text{\text{\text{MTixO5}}} due to ferroelectrically active TiO6 oxygen octahedral units. Journal of Applied Physics, 2015, 117, 17D923 Deviation from universal dielectric response in CaCu3Ti4O12. AIP Advances, 2021, 11, 035124 Sr-doping effects on conductivity, charge transport, and ferroelectricity of BaO.7LaO.3TiO3 epitaxial thin films*. Chinese Physics B, 2021, 30, 027701	2.5 2.5 1.5
87654	The equivalence of thermodynamic potentials for ferroelectric thin films. <i>Journal of Applied Physics</i> , 2021 , 130, 144103 Unusual enhancement of multiferroicity in YMn2\(\text{MTixO5}\) due to ferroelectrically active TiO6 oxygen octahedral units. <i>Journal of Applied Physics</i> , 2015 , 117, 17D923 Deviation from universal dielectric response in CaCu3Ti4O12. <i>AIP Advances</i> , 2021 , 11, 035124 Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films*. <i>Chinese Physics B</i> , 2021 , 30, 027701 High-performance complementary resistive switching in ferroelectric film. <i>AIP Advances</i> , 2021 , 11, 065 Epitaxial strain tunable conductivity and charge transport of Ba0.6La0.4TiO3 thin films deposited	2.5 2.5 1.5 1.2 2025 2.5