Johan Rockström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1910930/publications.pdf

Version: 2024-02-01

144 papers 63,009 citations

71 h-index 130 g-index

153 all docs

153 docs citations

times ranked

153

53251 citing authors

#	Article	IF	CITATIONS
1	A safe operating space for humanity. Nature, 2009, 461, 472-475.	13.7	8,638
2	Planetary boundaries: Guiding human development on a changing planet. Science, 2015, 347, 1259855.	6.0	7,124
3	Solutions for a cultivated planet. Nature, 2011, 478, 337-342.	13.7	5,821
4	Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet, The, 2019, 393, 447-492.	6.3	5,421
5	Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecology and Society, 2009, 14, .	1.0	3,867
6	The Lancet Commission on pollution and health. Lancet, The, 2018, 391, 462-512.	6.3	2,747
7	Resilience Thinking: Integrating Resilience, Adaptability and Transformability. Ecology and Society, 2010, 15, .	1.0	2,469
8	Sustainable development goals for people and planet. Nature, 2013, 495, 305-307.	13.7	2,055
9	Social-Ecological Resilience to Coastal Disasters. Science, 2005, 309, 1036-1039.	6.0	2,002
10	Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8252-8259.	3.3	1,832
11	Options for keeping the food system within environmental limits. Nature, 2018, 562, 519-525.	13.7	1,709
12	The Anthropocene: From Global Change to Planetary Stewardship. Ambio, 2011, 40, 739-761.	2.8	1,175
13	Climate tipping points — too risky to bet against. Nature, 2019, 575, 592-595.	13.7	1,162
14	Six Transformations to achieve the Sustainable Development Goals. Nature Sustainability, 2019, 2, 805-814.	11.5	999
15	A roadmap for rapid decarbonization. Science, 2017, 355, 1269-1271.	6.0	815
16	Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7348-7355.	3.3	717
17	Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 2017, 46, 4-17.	2.8	653
18	Social-ecological resilience and biosphere-based sustainability science. Ecology and Society, 2016, 21, .	1.0	616

#	Article	IF	CITATIONS
19	Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resources Research, 2009, 45, .	1.7	521
20	Managing water in rainfed agricultureâ€"The need for a paradigm shift. Agricultural Water Management, 2010, 97, 543-550.	2.4	475
21	Reducing hazard vulnerability: towards a common approach between disaster risk reduction and climate adaptation. Disasters, 2006, 30, 39-48.	1.1	458
22	Assessing "Dangerous Climate Change†Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE, 2013, 8, e81648.	1.1	448
23	Reconnecting to the Biosphere. Ambio, 2011, 40, 719-38.	2.8	420
24	Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 2018, 1, 441-446.	11.5	416
25	Social tipping dynamics for stabilizing Earth's climate by 2050. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2354-2365.	3.3	394
26	Assessing the water challenge of a new green revolution in developing countries. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6253-6260.	3.3	336
27	Beyond Cockpit-ism: Four Insights to Enhance the Transformative Potential of the Sustainable Development Goals. Sustainability, 2015, 7, 1651-1660.	1.6	327
28	Feeding ten billion people is possible within four terrestrial planetary boundaries. Nature Sustainability, 2020, 3, 200-208.	11.5	306
29	Three years to safeguard our climate. Nature, 2017, 546, 593-595.	13.7	305
30	Transforming Innovation for Sustainability. Ecology and Society, 2012, 17, .	1.0	300
31	Innovation can accelerate the transition towards a sustainable food system. Nature Food, 2020, 1, 266-272.	6.2	285
32	Dry spell analysis and maize yields for two semi-arid locations in east Africa. Agricultural and Forest Meteorology, 2003, 117, 23-37.	1.9	277
33	Our future in the Anthropocene biosphere. Ambio, 2021, 50, 834-869.	2.8	275
34	Multiscale regime shifts and planetary boundaries. Trends in Ecology and Evolution, 2013, 28, 389-395.	4.2	243
35	Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Current Opinion in Environmental Sustainability, 2013, 5, 551-558.	3.1	229
36	Human impacts on planetary boundaries amplified by Earth system interactions. Nature Sustainability, 2020, 3, 119-128.	11.5	217

#	Article	IF	Citations
37	The emergence and evolution of Earth System Science. Nature Reviews Earth & Environment, 2020, 1, 54-63.	12.2	213
38	An integrated framework for sustainable development goals. Ecology and Society, 2014, 19, .	1.0	209
39	Planet-proofing the global food system. Nature Food, 2020, 1, 3-5.	6.2	205
40	Rainwater management for increased productivity among small-holder farmers in drought prone environments. Physics and Chemistry of the Earth, 2002, 27, 949-959.	1.2	192
41	Water for food and nature in drought–prone tropics: vapour shift in rain–fed agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1997-2009.	1.8	191
42	Semiarid Crop Production from a Hydrological Perspective: Gap between Potential and Actual Yields. Critical Reviews in Plant Sciences, 2000, 19, 319-346.	2.7	190
43	Transnational Corporations as â€~Keystone Actors' in Marine Ecosystems. PLoS ONE, 2015, 10, e0127533.	1.1	187
44	Policy design for the Anthropocene. Nature Sustainability, 2019, 2, 14-21.	11.5	176
45	Drivers, "Slow" Variables, "Fast" Variables, Shocks, and Resilience. Ecology and Society, 2012, 17, .	1.0	164
46	Agriculture: Increase water harvesting in Africa. Nature, 2015, 519, 283-285.	13.7	160
47	Protecting irrecoverable carbon in Earth's ecosystems. Nature Climate Change, 2020, 10, 287-295.	8.1	159
48	Food systems for sustainable development: proposals for a profound four-part transformation. Agronomy for Sustainable Development, 2018, 38, 41.	2.2	157
49	Synchronous failure: the emerging causal architecture of global crisis. Ecology and Society, 2015, 20,	1.0	144
50	Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planetary Health, The, 2021, 5, e50-e62.	5.1	135
51	Water productivity in rainfed systems: overview of challenges and analysis of opportunities in water scarcity prone savannahs. Irrigation Science, 2007, 25, 299-311.	1.3	134
52	Global potential to increase crop production through water management in rainfed agriculture. Environmental Research Letters, 2009, 4, 044002.	2.2	134
53	Resilience building and water demand management for drought mitigation. Physics and Chemistry of the Earth, 2003, 28, 869-877.	1.2	131
54	Conservation tillage for sustainable agriculture. Soil and Tillage Research, 2001, 61, 93-108.	2.6	127

#	Article	IF	CITATIONS
55	Linkages Among Water Vapor Flows, Food Production, and Terrestrial Ecosystem Services. Ecology and Society, 1999, 3, .	0.9	124
56	A horizon scan of global conservation issues for 2014. Trends in Ecology and Evolution, 2014, 29, 15-22.	4.2	120
57	Rewiring food systems to enhance human health and biosphere stewardship. Environmental Research Letters, 2017, 12, 100201.	2.2	112
58	The role of water harvesting to achieve sustainable agricultural intensification and resilience against water related shocks in sub-Saharan Africa. Agriculture, Ecosystems and Environment, 2013, 181, 69-79.	2.5	107
59	Assessing impacts of agricultural water interventions in the Kothapally watershed, Southern India. Hydrological Processes, 2012, 26, 387-404.	1.1	98
60	The Water Planetary Boundary: Interrogation and Revision. One Earth, 2020, 2, 223-234.	3.6	98
61	A planetary boundary for green water. Nature Reviews Earth & Environment, 2022, 3, 380-392.	12.2	95
62	Understanding of water resilience in the Anthropocene. Journal of Hydrology X, 2019, 2, 100009.	0.8	89
63	Hysteresis of tropical forests in the 21st century. Nature Communications, 2020, 11, 4978.	5.8	87
64	Emergence of a global science–business initiative for ocean stewardship. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9038-9043.	3.3	86
65	Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resources Research, 2020, 56, e2019WR024957.	1.7	86
66	Identifying a Safe and Just Corridor for People and the Planet. Earth's Future, 2021, 9, e2020EF001866.	2.4	84
67	Mapping the irrecoverable carbon in Earth's ecosystems. Nature Sustainability, 2022, 5, 37-46.	11.5	84
68	A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use. PLoS ONE, 2013, 8, e57750.	1.1	83
69	Redefining green growth within planetary boundaries. Energy Research and Social Science, 2018, 44, 41-49.	3.0	79
70	Achieving the 17 Sustainable Development Goals within 9 planetary boundaries. Global Sustainability, 2019, 2, .	1.6	79
71	Low-cost drip irrigation—A suitable technology for southern Africa?. Agricultural Water Management, 2007, 89, 59-70.	2.4	78
72	Building resilience to drought in desertificationâ€prone savannas in Subâ€Saharan Africa: The water perspective. Natural Resources Forum, 2008, 32, 93-102.	1.8	78

#	Article	IF	CITATIONS
73	The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains. Sustainability, 2017, 9, 279.	1.6	78
74	The Quadruple Squeeze: Defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene. Ambio, 2010, 39, 257-265.	2.8	71
75	Assessing the implications of water harvesting intensification on upstream–downstream ecosystem services: A case study in the Lake Tana basin. Science of the Total Environment, 2016, 542, 22-35.	3.9	71
76	The world's biggest gamble. Earth's Future, 2016, 4, 465-470.	2.4	70
77	Response to Comment on "Planetary boundaries: Guiding human development on a changing planetâ€. Science, 2015, 348, 1217-1217.	6.0	69
78	Agro-hydrological evaluation of on-farm rainwater storage systems for supplemental irrigation in Laikipia district, Kenya. Agricultural Water Management, 2005, 73, 21-41.	2.4	65
79	Rainwater harvesting to enhance water productivity of rainfed agriculture in the semi-arid Zimbabwe. Physics and Chemistry of the Earth, 2007, 32, 1068-1073.	1.2	65
80	Hydro-economic evaluation of rainwater harvesting and management technologies: Farmers' investment options and risks in semi-arid Laikipia district of Kenya. Physics and Chemistry of the Earth, 2005, 30, 772-782.	1.2	63
81	Towards a sustainable water future: shaping the next decade of global water research. Current Opinion in Environmental Sustainability, 2013, 5, 708-714.	3.1	63
82	All options, not silver bullets, needed to limit global warming to 1.5 \hat{A}° C: a scenario appraisal. Environmental Research Letters, 2021, 16, 064037.	2.2	58
83	Green water security for the food makers of tomorrow: windows of opportunity in drought-prone savannahs. Water Science and Technology, 2001, 43, 71-78.	1.2	55
84	Onâ€Farm Spatial and Temporal Variability of Soil and Water in Pearl Millet Cultivation. Soil Science Society of America Journal, 1999, 63, 1308-1319.	1.2	54
85	Defining a sustainable development target space for 2030 and 2050. One Earth, 2022, 5, 142-156.	3.6	54
86	A horizon scan of global conservation issues for 2015. Trends in Ecology and Evolution, 2015, 30, 17-24.	4.2	53
87	A Horizon Scan of Global Conservation Issues for 2016. Trends in Ecology and Evolution, 2016, 31, 44-53.	4.2	53
88	Processes for the sustainable stewardship of marine environments. Ecological Economics, 2016, 128, 55-67.	2.9	52
89	Linking Freshwater Flows and Ecosystem Services Appropriated by People: The Case of the Baltic Sea Drainage Basin. Ecosystems, 1999, 2, 351-366.	1.6	51
90	Closing the loop: Reconnecting human dynamics to Earth System science. Infrastructure Asset Management, 2017, 4, 151-157.	1.2	48

#	Article	IF	Citations
91	An assessment of the effect of human faeces and urine on maize production and water productivity. Physics and Chemistry of the Earth, 2005, 30, 840-845.	1.2	47
92	Water is a master variable: Solving for resilience in the modern era. Water Security, 2019, 8, 100048.	1.2	46
93	The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries. Environmental Research Letters, 2013, 8, 044048.	2.2	45
94	Contours of a Resilient Global Future. Sustainability, 2014, 6, 123-135.	1.6	44
95	Healthy diets and sustainable food systems – Authors' reply. Lancet, The, 2019, 394, 215-216.	6.3	42
96	We need biosphere stewardship that protects carbon sinks and builds resilience. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	41
97	Yield and soil system changes from conservation tillage in dryland farming: A case study from North Eastern Tanzania. Agricultural Water Management, 2011, 98, 1687-1695.	2.4	39
98	Assessment of the growth in social groups for sustainable agriculture and land management. Global Sustainability, 2020, 3, .	1.6	36
99	Acting in the Anthropocene: the EAT–Lancet Commission. Lancet, The, 2016, 387, 2364-2365.	6.3	35
100	Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa. Agricultural Water Management, 2011, 98, 1113-1124.	2.4	33
101	Upâ€scaling potential impacts on water flows from agricultural water interventions: opportunities and tradeâ€offs in the Osman Sagar catchment, Musi subâ€basin, India. Hydrological Processes, 2013, 27, 3905-3921.	1.1	33
102	Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions. Environmental Research Letters, 2020, 15, 124021.	2.2	28
103	Assessment of rainwater retention in agricultural land and crop yield increase due to conservation tillage in Ewaso Ng'iro river basin, Kenya. Physics and Chemistry of the Earth, 2006, 31, 910-918.	1.2	27
104	Semiarid Crop Production from a Hydrological Perspective: Gap between Potential and Actual Yields. , 0 , .		27
105	Future Earth. Science, 2016, 351, 319-319.	6.0	26
106	Defining â€~science-based targets'. National Science Review, 2021, 8, nwaa186.	4.6	26
107	Investment in resilient food systems in the most vulnerable and fragile regions is critical. Nature Food, 2021, 2, 546-551.	6.2	26
108	Ten new insights in climate science 2021: a horizon scan. Global Sustainability, 2021, 4, .	1.6	26

#	Article	IF	CITATIONS
109	Human and planetary health: towards a common language. Lancet, The, 2015, 386, e36-e37.	6.3	23
110	Planetary Boundaries: Separating Fact from Fiction. A Response to Montoya et al Trends in Ecology and Evolution, 2018, 33, 233-234.	4.2	21
111	Future Hydroclimatic Impacts on Africa: Beyond the Paris Agreement. Earth's Future, 2019, 7, 748-761.	2.4	21
112	Corona and the climate: a comparison of two emergencies. Global Sustainability, 2020, 3, .	1.6	19
113	Climate change: The necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th <scp>IPCC</scp> Assessment. Earth's Future, 2014, 2, 606-611.	2.4	18
114	Ten new insights in climate science 2020 – a horizon scan. Global Sustainability, 2021, 4, .	1.6	17
115	Low head drip irrigation kits and treadle pumps for smallholder farmers in Zimbabwe: a technical evaluation based on laboratory tests. Physics and Chemistry of the Earth, 2004, 29, 1049-1059.	1.2	16
116	Global sustainability: the challenge ahead. Global Sustainability, 2018, $1, .$	1.6	16
117	Investigation of the Curve Number Method For Surface Runoff Estimation In Tropical Regions. Journal of the American Water Resources Association, 2016, 52, 1155-1169.	1.0	14
118	Business leaders. Nature Climate Change, 2011, 1, 426-427.	8.1	13
119	Balancing Water for Humans and Nature. , 0, , .		13
120	Scientific mobilization of keystone actors for biosphere stewardship. Scientific Reports, 2022, 12, 3802.	1.6	13
121	Suitability of Water Harvesting in the Upper Blue Nile Basin, Ethiopia: A First Step towards a Mesoscale Hydrological Modeling Framework. Advances in Meteorology, 2016, 2016, 1-12.	0.6	12
122	Is wetter better? Exploring agriculturally-relevant rainfall characteristics over four decades in the Sahel. Environmental Research Letters, 2021, 16, 035002.	2.2	12
123	Potential feedbacks between loss of biosphere integrity and climate change. Global Sustainability, 2019, 2, .	1.6	11
124	Global food production in a water-constrained world: exploring â€~green' and â€~blue' challenges and solutions. , 2011, , 131-152.		10
125	Analytically tractable climate–carbon cycle feedbacks under 21st century anthropogenic forcing. Earth System Dynamics, 2018, 9, 507-523.	2.7	9
126	Resolving ecological feedbacks on the ocean carbon sink in Earth system models. Earth System Dynamics, 2021, 12, 797-818.	2.7	8

#	Article	IF	CITATIONS
127	Stockholm to Stockholm: Achieving a safe Earth requires goals that incorporate a just approach. One Earth, 2021, 4, 1209-1211.	3.6	7
128	A â€~perfect' agreement in Paris is not essential. Nature, 2015, 527, 411-411.	13.7	5
129	The EAT–Lancet Commission: a flawed approach? – Authors' reply. Lancet, The, 2019, 394, 1141-1142.	6.3	5
130	Watershed development as a growth engine for sustainable development of rainfed areas. , 2011 , , $35-52$.		4
131	Human well-being in the Anthropocene: limits to growth. Global Sustainability, 2021, 4, .	1.6	4
132	Energy and Environment., 0,, 191-254.		2
133	Managing the global commons. Our Planet: the Magazine of the United Nations Environment Programme, 0, 2017, 26-27.	0.0	1
134	Conference Covered Climate from All Angles. Science, 2009, 324, 881-882.	6.0	0
135	The role played by water in the biosphere. , 0, , 2-44.		0
136	Human modification of the Earth System. , 0, , 46-67.		0
137	Crucial functioning of and human dependence on the global water system. , 0, , 94-140.		0
138	Food production: a mega water challenge. , 0, , 142-171.		0
139	Closing the yield gap in the savannah zone. , 0, , 172-193.		0
140	Pathways to the future. , 0, , 250-276.		0
141	Reply to comment on †Up-scaling potential impacts on water flows from agricultural water interventions: opportunities and trade-offs in the Osman Sagar catchment, Musi sub-basin, India†M. <i>Hydrological Processes</i> 27: 3905-3921 by Bouma <i>et al</i> Hydrological Processes, 2014, 28. 3352-3355.	1.1	0
142	Governance for navigating the novel freshwater dynamics of the Anthropocene., 0,, 226-249.		0
143	Delineating the Plate Boundaries: A Review of Integrated Metrics for Healthy and Environmentally Sustainable Diets., 2020,, 339-350.		0
144	Obituary for Paul J. Crutzen. Global Sustainability, 2021, 4, .	1.6	0