
## Marijke J E Kuijpers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1910598/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tyrosine Kinase Inhibitor Sunitinib Delays Platelet-Induced Coagulation: Additive Effects of Aspirin.<br>Thrombosis and Haemostasis, 2022, 122, 092-104.                                                           | 3.4  | 11        |
| 2  | Effects of Platelet Agonists and Priming on the Formation of Platelet Populations. Thrombosis and Haemostasis, 2022, 122, 726-738.                                                                                 | 3.4  | 14        |
| 3  | Nutrition Phytochemicals Affecting Platelet Signaling and Responsiveness: Implications for Thrombosis and Hemostasis. Thrombosis and Haemostasis, 2022, 122, 879-894.                                              | 3.4  | 11        |
| 4  | Ultra-high-throughput Ca2+ assay in platelets to distinguish ITAM-linked and G-protein-coupled receptor activation. IScience, 2022, 25, 103718.                                                                    | 4.1  | 8         |
| 5  | Protein C or Protein S deficiency associates with paradoxically impaired plateletâ€dependent thrombus<br>and fibrin formation under flow. Research and Practice in Thrombosis and Haemostasis, 2022, 6,<br>e12678. | 2.3  | 2         |
| 6  | Temporal Roles of Platelet and Coagulation Pathways in Collagen- and Tissue Factor-Induced<br>Thrombus Formation. International Journal of Molecular Sciences, 2022, 23, 358.                                      | 4.1  | 16        |
| 7  | MicroRNA-26b Attenuates Platelet Adhesion and Aggregation in Mice. Biomedicines, 2022, 10, 983.                                                                                                                    | 3.2  | 4         |
| 8  | Molecular Mechanisms of Hemostasis, Thrombosis and Thrombo-Inflammation. International Journal of Molecular Sciences, 2022, 23, 5825.                                                                              | 4.1  | 4         |
| 9  | Quantitative and qualitative changes in platelet traits of sunitinib-treated patients with renal cell carcinoma in relation to circulating sunitinib levels: a proof-of-concept study. BMC Cancer, 2022, 22, .     | 2.6  | 0         |
| 10 | Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. PLoS ONE, 2021, 16, e0244736.                                                                                           | 2.5  | 12        |
| 11 | Platelets as messengers of early-stage cancer. Cancer and Metastasis Reviews, 2021, 40, 563-573.                                                                                                                   | 5.9  | 23        |
| 12 | Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nature Communications, 2021, 12, 3754.                                                                               | 12.8 | 39        |
| 13 | Comparison of inhibitory effects of irreversible and reversible Btk inhibitors on platelet function.<br>EJHaem, 2021, 2, 685-699.                                                                                  | 1.0  | 8         |
| 14 | Inhibition of Phosphodiesterase 3A by Cilostazol Dampens Proinflammatory Platelet Functions. Cells,<br>2021, 10, 1998.                                                                                             | 4.1  | 6         |
| 15 | The Analysis of Platelet-Derived circRNA Repertoire as Potential Diagnostic Biomarker for Non-Small<br>Cell Lung Cancer. Cancers, 2021, 13, 4644.                                                                  | 3.7  | 24        |
| 16 | Platelet calcium signaling by G-protein coupled and ITAM-linked receptors regulating anoctamin-6 and procoagulant activity. Platelets, 2021, 32, 863-871.                                                          | 2.3  | 39        |
| 17 | Multiparameter Evaluation of the Platelet-Inhibitory Effects of Tyrosine Kinase Inhibitors Used for<br>Cancer Treatment. International Journal of Molecular Sciences, 2021, 22, 11199.                             | 4.1  | 6         |
| 18 | Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.                                                                                                   |      | 0         |

MARIJKE J E KUIJPERS

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.                                                                                               |     | 0         |
| 20 | Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.                                                                                               |     | 0         |
| 21 | Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. , 2021, 16, e0244736.                                                                                               |     | Ο         |
| 22 | Native, Intact Glucagon-Like Peptide 1 Is a Natural Suppressor of Thrombus Growth Under<br>Physiological Flow Conditions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e65-e77.               | 2.4 | 14        |
| 23 | Platelet-primed interactions of coagulation and anticoagulation pathways in flow-dependent thrombus formation. Scientific Reports, 2020, 10, 11910.                                                            | 3.3 | 21        |
| 24 | Mild hyperlipidemia in mice aggravates platelet responsiveness in thrombus formation and exploration of platelet proteome and lipidome. Scientific Reports, 2020, 10, 21407.                                   | 3.3 | 13        |
| 25 | LIM-only protein FHL2 attenuates vascular tissue factor activity, inhibits thrombus formation in mice and FHL2 genetic variation associates with human venous thrombosis. Haematologica, 2020, 105, 1677-1685. | 3.5 | 4         |
| 26 | Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice:<br>Link to Thrombosis and Hemostasis. Frontiers in Cardiovascular Medicine, 2019, 6, 99.                       | 2.4 | 12        |
| 27 | Role of Platelet Glycoprotein VI and Tyrosine Kinase Syk in Thrombus Formation on Collagen-Like<br>Surfaces. International Journal of Molecular Sciences, 2019, 20, 2788.                                      | 4.1 | 28        |
| 28 | The Microbiota Promotes Arterial Thrombosis in Low-Density Lipoprotein Receptor-Deficient Mice.<br>MBio, 2019, 10, .                                                                                           | 4.1 | 50        |
| 29 | Platelets: the holy grail in cancer blood biomarker research?. Angiogenesis, 2019, 22, 1-2.                                                                                                                    | 7.2 | 17        |
| 30 | High-throughput elucidation of thrombus formation reveals sources of platelet function variability.<br>Haematologica, 2019, 104, 1256-1267.                                                                    | 3.5 | 70        |
| 31 | Exploration of the platelet proteome in patients with early-stage cancer. Journal of Proteomics, 2018, 177, 65-74.                                                                                             | 2.4 | 65        |
| 32 | Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148. Blood, 2018, 131, 1122-1144.                                                                                               | 1.4 | 35        |
| 33 | Tyrosine Kinase Inhibitor Pazopanib Inhibits Platelet Procoagulant Activity in Renal Cell Carcinoma<br>Patients. Frontiers in Cardiovascular Medicine, 2018, 5, 142.                                           | 2.4 | 14        |
| 34 | Uncoupling ITIM receptor G6b-B from tyrosine phosphatases Shp1 and Shp2 disrupts murine platelet homeostasis. Blood, 2018, 132, 1413-1425.                                                                     | 1.4 | 25        |
| 35 | Congenital macrothrombocytopenia with focal myelofibrosis due to mutations in human G6b-B is rescued in humanized mice. Blood, 2018, 132, 1399-1412.                                                           | 1.4 | 37        |
| 36 | A combination of platelet features allows detection of early-stage cancer. European Journal of<br>Cancer, 2017, 80, 5-13.                                                                                      | 2.8 | 52        |

MARIJKE J E KUIJPERS

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Sunitinib uptake inhibits platelet function in cancer patients. European Journal of Cancer, 2016, 66, 47-54.                                                                                                                      | 2.8 | 18        |
| 38 | Survival protein anoctaminâ€6 controls multiple platelet responses including phospholipid scrambling, swelling, and protein cleavage. FASEB Journal, 2016, 30, 727-737.                                                           | 0.5 | 52        |
| 39 | Rate-limiting roles of the tenase complex of factors VIII and IX in platelet procoagulant activity and formation of platelet-fibrin thrombi under flow. Haematologica, 2015, 100, 748-756.                                        | 3.5 | 45        |
| 40 | Platelets: an unexploited data source in biomarker research. Lancet Haematology,the, 2015, 2, e512-e513.                                                                                                                          | 4.6 | 19        |
| 41 | Platelet CD40L Modulates Thrombus Growth Via Phosphatidylinositol 3-Kinase β, and Not Via CD40 and<br>lκB Kinase α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1374-1381.                                      | 2.4 | 31        |
| 42 | Optimal Human Blood Sampling for Platelet Research. Current Angiogenesis, 2014, 2, 157-161.                                                                                                                                       | 0.1 | 5         |
| 43 | Targeting platelet receptor function in thrombus formation: The risk of bleeding. Blood Reviews, 2014, 28, 9-21.                                                                                                                  | 5.7 | 43        |
| 44 | Factor XII Regulates the Pathological Process of Thrombus Formation on Ruptured Plaques.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1674-1680.                                                              | 2.4 | 108       |
| 45 | Intravital Imaging of Thrombus Formation in Small and Large Mouse Arteries: Experimentally Induced<br>Vascular Damage and Plaque Rupture In Vivo. Methods in Molecular Biology, 2012, 788, 3-19.                                  | 0.9 | 9         |
| 46 | Role of newly formed platelets in thrombus formation in rat after clopidogrel treatment: comparison<br>to the reversible binding P2Y12 antagonist ticagrelor. Thrombosis and Haemostasis, 2011, 106, 1179-1188                    | 3.4 | 12        |
| 47 | Stabilizing Role of Platelet P2Y12 Receptors in Shear-Dependent Thrombus Formation on Ruptured Plaques. PLoS ONE, 2010, 5, e10130.                                                                                                | 2.5 | 42        |
| 48 | Key Role of Platelet Procoagulant Activity in Tissue Factor-and Collagen-Dependent Thrombus<br>Formation in Arterioles and VenulesIn VivoDifferential Sensitivity to Thrombin Inhibition.<br>Microcirculation, 2008, 15, 269-282. | 1.8 | 59        |
| 49 | Segregation of Platelet Aggregatory and Procoagulant Microdomains in Thrombus Formation.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2484-2490.                                                              | 2.4 | 137       |
| 50 | Role of murine integrin alpha2beta1 in thrombus stabilization and embolization: contribution of thromboxane A2. Thrombosis and Haemostasis, 2007, 98, 1072-80.                                                                    | 3.4 | 17        |
| 51 | Platelet Collagen Receptors and Coagulation. A Characteristic Platelet Response as Possible Target for Antithrombotic Treatment. Trends in Cardiovascular Medicine, 2005, 15, 86-92.                                              | 4.9 | 56        |
| 52 | The Glycoprotein VI-Phospholipase Cγ2 Signaling Pathway Controls Thrombus Formation Induced by<br>Collagen and Tissue Factor In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology,<br>2005, 25, 2673-2678.    | 2.4 | 82        |
| 53 | Contribution of platelet glycoprotein VI to the thrombogenic effect of collagens in fibrous atherosclerotic lesions. Atherosclerosis, 2005, 181, 19-27.                                                                           | 0.8 | 72        |
| 54 | Adhesion of human and mouse platelets to collagen under shear: a unifying model. FASEB Journal, 2005, 19, 1-22.                                                                                                                   | 0.5 | 113       |

MARIJKE J E KUIJPERS

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Principal Role of Glycoprotein VI in α2β1 and αIIbβ3 Activation During Collagen-Induced Thrombus<br>Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1727-1733.       | 2.4 | 86        |
| 56 | Facilitating roles of murine platelet glycoprotein Ib and αIIbβ3 in phosphatidylserine exposure during<br>νWF-collagen-induced thrombus formation. Journal of Physiology, 2004, 558, 403-415. | 2.9 | 20        |
| 57 | Complementary roles of platelet glycoprotein VI and integrin α2β1 in collagenâ€induced thrombus<br>formation in flowing whole blood ex vivo. FASEB Journal, 2003, 17, 685-687.                | 0.5 | 136       |
| 58 | Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood, 2003, 101, 3969-3976.                                                    | 1.4 | 121       |