Yuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1910569/publications.pdf

Version: 2024-02-01

26	531	12	22
papers	citations	h-index	g-index
28	28	28	843
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A novel <scp>DPP</scp> â€4 inhibitor Gramcyclin A attenuates cognitive deficits in <scp>APP</scp> / <scp>PS1</scp> /tau triple transgenic mice via enhancing brain <scp>GLP</scp> â€1â€dependent glucose uptake. Phytotherapy Research, 2022, 36, 1297-1309.	5.8	6
2	Au Nanoparticle Modification Induces Charge-Transfer Channels to Enhance the Electrocatalytic Hydrogen Evolution Reaction of InSe Nanosheets. ACS Applied Materials & Enhance the Electrocatalytic Hydrogen Evolution Reaction of InSe Nanosheets. ACS Applied Materials & Electrocatalytic 2908-2917.	8.0	14
3	Two-dimensional gold decorated indium selenide for near-infrared and mid-infrared ultrafast photonics. Optics and Laser Technology, 2022, 150, 107920.	4.6	10
4	A novel natural PPARÎ ³ agonist, Gypenoside LXXV, ameliorates cognitive deficits by enhancing brain glucose uptake via the activation of Akt/GLUT4 signaling in db/db mice. Phytotherapy Research, 2022, 36, 1770-1784.	5.8	4
5	Klotho an Autophagy Stimulator as a Potential Therapeutic Target for Alzheimer's Disease: A Review. Biomedicines, 2022, 10, 705.	3.2	13
6	A Fully Integrated Flexible Tunable Chemical Sensor Based on Gold-Modified Indium Selenide Nanosheets. ACS Sensors, 2022, 7, 1183-1193.	7.8	29
7	Pathogenesis of sepsis-associated encephalopathy: more than blood–brain barrier dysfunction. Molecular Biology Reports, 2022, 49, 10091-10099.	2.3	5
8	Occludin degradation makes brain microvascular endothelial cells more vulnerable to reperfusion injury in vitro. Journal of Neurochemistry, 2021, 156, 352-366.	3.9	36
9	Variants of <i>WNT7A</i> and <i>GPR124</i> are associated with hemorrhagic transformation following intravenous thrombolysis in ischemic stroke. CNS Neuroscience and Therapeutics, 2021, 27, 71-81.	3.9	12
10	Silencing PAQR3 protects against oxygen-glucose deprivation/reperfusion-induced neuronal apoptosis via activation of PI3K/AKT signaling in PC12 cells. Life Sciences, 2021, 265, 118806.	4.3	7
11	Combined Analysis of Surface Protein Profile and microRNA Expression Profile of Exosomes Derived from Brain Microvascular Endothelial Cells in Early Cerebral Ischemia. ACS Omega, 2021, 6, 22410-22421.	3.5	12
12	A Co-Doped Fe ₃ O ₄ Nanozyme Shows Enhanced Reactive Oxygen and Nitrogen Species Scavenging Activity and Ameliorates the Deleterious Effects of Ischemic Stroke. ACS Applied Materials & Deleterious Effects of Ischemic Stroke. ACS Applied Materials & Deleterious Effects of Ischemic Stroke. ACS Applied Materials & Deleterious Effects of Ischemic Stroke. ACS Applied Materials & Deleterious Effects of Ischemic Stroke. ACS Applied Materials & Deleterious Effects of Ischemic Stroke.	8.0	33
13	Intranasal 15d-PGJ2 ameliorates brain glucose hypometabolism via PPARγ-dependent activation of PGC-1α/GLUT4 signalling in APP/PS1 transgenic mice. Neuropharmacology, 2021, 196, 108685.	4.1	6
14	Indium selenide for Q-switched pulse generation in a mid-infrared fiber laser. Journal of Materials Chemistry C, 2021, 9, 5893-5898.	5. 5	5
15	Protein–Carbon Dot Nanohybrid-Based Early Blood–Brain Barrier Damage Theranostics. ACS Applied Materials & Company (1997) (8.0	21
16	Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson's disease. Biomaterials, 2020, 260, 120339.	11.4	66
17	MiR-539-5p Decreases amyloid \hat{l}^2 -protein production, hyperphosphorylation of Tau and Memory Impairment by Regulating PI3K/Akt/GSK-3 \hat{l}^2 Pathways in APP/PS1 Double Transgenic Mice. Neurotoxicity Research, 2020, 38, 524-535.	2.7	13
18	Furanodienone overcomes temozolomide resistance in glioblastoma through the downregulation of CSPG4â€Aktâ€ERK signalling by inhibiting EGR1â€dependent transcription. Phytotherapy Research, 2019, 33, 1736-1747.	5.8	20

#	Article	IF	CITATIONS
19	Santacruzamate A Ameliorates AD-Like Pathology by Enhancing ER Stress Tolerance Through Regulating the Functions of KDELR and Mia40-ALR in vivo and in vitro. Frontiers in Cellular Neuroscience, 2019, 13, 61.	3.7	10
20	Enolase-phosphatase 1 as a novel potential malignant glioma indicator promotes cell proliferation and migration. Oncology Reports, 2018, 40, 2233-2241.	2.6	8
21	A novel HDAC6 inhibitor Tubastatin A: Controls HDAC6-p97/VCP-mediated ubiquitination-autophagy turnover and reverses Temozolomide-induced ER stress-tolerance in GBM cells. Cancer Letters, 2017, 391, 89-99.	7.2	45
22	Homozygous mutation of VPS16 gene is responsible for an autosomal recessive adolescent-onset primary dystonia. Scientific Reports, 2016, 6, 25834.	3.3	36
23	Normobaric hyperoxia retards the evolution of ischemic brain tissue toward infarction in a rat model of transient focal cerebral ischemia. Neurological Research, 2016, 38, 75-79.	1.3	9
24	Nitric Oxide Interacts with Caveolin-1 to Facilitate Autophagy-Lysosome-Mediated Claudin-5 Degradation in Oxygen-Glucose Deprivation-Treated Endothelial Cells. Molecular Neurobiology, 2016, 53, 5935-5947.	4.0	64
25	Upregulation of miR-107 Inhibits Glioma Angiogenesis and VEGF Expression. Cellular and Molecular Neurobiology, 2016, 36, 113-120.	3 . 3	40
26	NADPH oxidase 2 does not contribute to early reperfusion-associated reactive oxygen species generation following transient focal cerebral ischemia. Neural Regeneration Research, 2016, 11, 1773.	3.0	7