Vahid Taghikhani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1910483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applications of the quartz crystal microbalance in energy and environmental sciences: From flow assurance to nanotechnology. Fuel, 2022, 313, 122998.	3.4	9
2	A Review on Chemical Sand Production Control Techniques in Oil Reservoirs. Energy & Fuels, 2022, 36, 5185-5208.	2.5	7
3	In-depth characterization of light, medium and heavy oil asphaltenes as well as asphaltenes subfractions. Fuel, 2022, 324, 124525.	3.4	17
4	An integrated approach for predicting asphaltenes precipitation and deposition along wellbores. Journal of Petroleum Science and Engineering, 2021, 203, 108486.	2.1	7
5	Synthesis of a custom-made suspension of preformed particle gel with improved strength properties and its application in the enhancement of oil recovery in a micromodel scale. Journal of Petroleum Science and Engineering, 2021, 207, 109108.	2.1	17
6	Microscopic Insight into Kinetics of Inorganic Scale Deposition during Smart Water Injection Using Dynamic Quartz Crystal Microbalance and Molecular Dynamics Simulation. Industrial & Engineering Chemistry Research, 2020, 59, 609-619.	1.8	9
7	A new multiphase and dynamic asphaltene deposition tool (MAD-ADEPT) to predict the deposition of asphaltene particles on tubing wall. Journal of Petroleum Science and Engineering, 2020, 195, 107553.	2.1	6
8	Rheological properties and the micromodel investigation of nanosilica gel-reinforced preformed particle gels developed for improved oil recovery. Journal of Petroleum Science and Engineering, 2020, 192, 107258.	2.1	37
9	Minimum miscibility pressure and interfacial tension measurements for N2 and CO2 gases in contact with W/O emulsions for different temperatures and pressures. Fuel, 2018, 225, 623-631.	3.4	22
10	New Two-Dimensional Particle-Scale Model To Simulate Asphaltene Deposition in Wellbores and Pipelines. Energy & Fuels, 2018, 32, 2661-2672.	2.5	39
11	A Heuristic Insight on End-Point Calculation and a New Phase Interference Parameter in Two-Phase Relative Permeability Curves for Horizontal Fracture Flow. Transport in Porous Media, 2017, 119, 499-519.	1.2	2
12	Electrokinetic behavior of asphaltene particles. Fuel, 2016, 178, 234-242.	3.4	32
13	NUMERICAL ANALYSIS OF HEAT CONDUCTION TREATED WITH HIGHLY CONDUCTIVE COPPER OXIDE NANOPARTICLES IN POROUS MEDIA. Special Topics and Reviews in Porous Media, 2016, 7, 149-160.	0.6	5
14	A comprehensive study on CO2 solubility in brine: Thermodynamic-based and neural network modeling. Fluid Phase Equilibria, 2015, 403, 153-159.	1.4	9
15	Micro-Emulsion Phase Behavior of a Cationic Surfactant at Intermediate Interfacial Tension in Sandstone and Carbonate Rocks. Journal of Energy Resources Technology, Transactions of the ASME, 2015, 137, .	1.4	30
16	Experimental Investigation on the Effect of Asphaltene Types on the Interfacial Tension of CO ₂ –Hydrocarbon Systems. Energy & Fuels, 2015, 29, 7941-7947.	2.5	16
17	Enhanced Heavy Oil Recovery Using TiO ₂ Nanoparticles: Investigation of Deposition during Transport in Core Plug. Energy & amp; Fuels, 2015, 29, 1-8.	2.5	133
18	Understanding the polydisperse behavior of asphaltenes during precipitation. Fuel, 2014, 117, 206-217.	3.4	54

VAHID TAGHIKHANI

#	Article	IF	CITATIONS
19	Enhanced Heavy Oil Recovery in Sandstone Cores Using TiO ₂ Nanofluids. Energy & Fuels, 2014, 28, 423-430.	2.5	234
20	Precipitated Asphaltene Amount at High-Pressure and High-Temperature Conditions. Energy & Fuels, 2014, 28, 1596-1610.	2.5	35
21	Asphaltene Deposition in Different Depositing Environments: Part 1. Model Oil. Energy & Fuels, 2014, 28, 1617-1628.	2.5	54
22	Experimental investigation of simultaneous water and CO2(SWACO2) injection for oil recovery in immiscible and near-miscible conditions: A comparative study. Canadian Journal of Chemical Engineering, 2014, 92, 1791-1797.	0.9	4
23	Investigation of Oil–Asphaltene Slurry Rheological Behavior. Journal of Dispersion Science and Technology, 2014, 35, 1155-1162.	1.3	10
24	Effects of Paraffinic Group on Interfacial Tension Behavior of CO ₂ –Asphaltenic Crude Oil Systems. Journal of Chemical & Engineering Data, 2014, 59, 2563-2569.	1.0	20
25	A new model based on multilayer kinetic adsorption mechanism for asphaltenes adsorption in porous media during dynamic condition. Fluid Phase Equilibria, 2014, 375, 236-245.	1.4	12
26	Asphaltene Deposition in Different Depositing Environments: Part 2. Real Oil. Energy & Fuels, 2014, 28, 3594-3603.	2.5	46
27	Experimental investigation of water alternating CH _{4-CO_{2 mixture gas injection in light oil reservoirs. International Journal of Oil, Gas and Coal Technology, 2014, 8, 31.}}	0.1	1
28	Asphaltene Deposition under Dynamic Conditions in Porous Media: Theoretical and Experimental Investigation. Energy & Fuels, 2013, 27, 622-639.	2.5	49
29	A modified scaling equation based on properties of bottom hole live oil for asphaltene precipitation estimation under pressure depletion and gas injection conditions. Fluid Phase Equilibria, 2013, 358, 212-219.	1.4	34
30	Experimental Investigation of Rheological and Morphological Properties of Water in Crude Oil Emulsions Stabilized by a Lipophilic Surfactant. Journal of Dispersion Science and Technology, 2013, 34, 356-368.	1.3	14
31	Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: Experimental and modelling. Journal of Chemical Thermodynamics, 2013, 65, 220-232.	1.0	123
32	Investigation on Asphaltene Deposition Mechanisms during CO ₂ Flooding Processes in Porous Media: A Novel Experimental Study and a Modified Model Based on Multilayer Theory for Asphaltene Adsorption. Energy & Fuels, 2012, 26, 5080-5091.	2.5	83
33	Solubility of CO ₂ , H ₂ S, and Their Mixture in the Ionic Liquid 1-Octyl-3-methylimidazolium Bis(trifluoromethyl)sulfonylimide. Journal of Physical Chemistry B, 2012, 116, 2758-2774.	1.2	188
34	Thermodynamic properties of aqueous salt containing urea solutions. Fluid Phase Equilibria, 2012, 325, 71-79.	1.4	34
35	Investigation on the Solubility of SO ₂ and CO ₂ in Imidazolium-Based Ionic Liquids Using NPT Monte Carlo Simulation. Journal of Physical Chemistry B, 2011, 115, 13599-13607.	1.2	66
36	Densities, Viscosities, and Surface Tensions of Aqueous Mixtures of Sulfolane + Triethanolamine and Sulfolane + Diisopropanolamine. Journal of Chemical & Engineering Data, 2011, 56, 4317-4324.	1.0	45

VAHID TAGHIKHANI

#	Article	IF	CITATIONS
37	Experimental investigation and thermodynamic modeling of asphaltene precipitation. Scientia Iranica, 2011, 18, 1384-1390.	0.3	43
38	Experimental study and modelling of saturation molality of NaCl in quaternary aqueous electrolyte solutions at various temperatures. Desalination, 2011, 267, 228-232.	4.0	2
39	Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions. Journal of Chemical Thermodynamics, 2010, 42, 787-791.	1.0	96
40	Measurement and Correlation of Surface Tension for Single Aqueous Electrolyte Solutions. International Journal of Thermophysics, 2010, 31, 852-859.	1.0	11
41	Solubility of H2S in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions. Fluid Phase Equilibria, 2010, 298, 303-309.	1.4	116
42	Measurement and correlation of the saturation concentrations for single and mixed aqueous electrolyte solutions at various temperatures. Desalination, 2010, 258, 187-193.	4.0	4
43	Partitioning of Penicillin G Acylase in Aqueous Two-Phase Systems of Poly(ethylene glycol) 20000 or 35000 and Potassium Dihydrogen Phosphate or Sodium Citrate. Journal of Chemical & Engineering Data, 2010, 55, 243-248.	1.0	30
44	Experimental Study and Mathematical Modeling of Partitioning of β-Amylase and Amyloglucosidase in PEGâ~'Salt Aqueous Two-Phase Systems. Journal of Chemical & Engineering Data, 2010, 55, 4968-4975.	1.0	11
45	Solubility of H ₂ S in Ionic Liquids 1-Ethyl-3-methylimidazolium Hexafluorophosphate ([emim][PF ₆]) and 1-Ethyl-3-methylimidazolium Bis(trifluoromethyl)sulfonylimide ([emim][Tf ₂ N]). Journal of Chemical & Engineering Data, 2010, 55, 5839-5845.	1.0	114
46	Measurement and Modeling Process Partitioning of Cephalexin Antibiotic in Aqueous Two-Phase Systems Containing Poly(ethylene glycol) 4000, 10000 and K ₂ HPO ₄ , Na ₃ Citrate. Journal of Chemical & Engineering Data, 2009, 54, 2239-2244.	1.0	21
47	Modeling of Aqueous Biomolecules Using a New Free-Volume Group Contribution Model. Industrial & Engineering Chemistry Research, 2009, 48, 4109-4118.	1.8	20
48	A Modified Local Composition-Based Model forÂCorrelating the Vapor-Liquid and Liquid-Liquid Phase Equilibria of Aqueous Polymer-Salt Systems. Journal of Solution Chemistry, 2008, 37, 665-675.	0.6	6
49	A modified square well model in obtaining the surface tension of pure and binary mixtures of hydrocarbons. Journal of Chemical Thermodynamics, 2008, 40, 1131-1135.	1.0	4
50	Kinetic Study of Crude Oil Combustion in the Presence of Carbonate Rock. , 2007, , .		7
51	A new model in correlating the activity coefficients of aqueous electrolyte solutions with ion pair formation. Fluid Phase Equilibria, 2007, 261, 313-319.	1.4	5
52	Measurement and correlation of vapor–liquid equilibria of the aqueous poly(ethylene) Tj ETQq0 0 0 rgBT /Ove 2007, 262, 137-148.	rlock 10 Tí 1.4	f 50 147 Td (g 13
53	Classical and recent free-volume models for polymer solutions: A comparative evaluation. Fluid Phase Equilibria, 2007, 257, 63-69.	1.4	16
54	Modification of the GV-MSA model in obtaining the activity and osmotic coefficients of aqueous electrolyte solutions. Fluid Phase Equilibria, 2006, 240, 167-172.	1.4	5

VAHID TAGHIKHANI

#	Article	IF	CITATIONS
55	Application of a new simplified SAFT to VLE study of associating and non-associating fluids. Fluid Phase Equilibria, 2005, 233, 110-121.	1.4	4
56	A modified free-volume-based model for predicting vapor–liquid and solid–liquid equilibria for size asymmetric systems. Fluid Phase Equilibria, 2005, 234, 94-100.	1.4	16
57	Application of the non-primitive MSA-based models in predicting the activity and the osmotic coefficients of aqueous electrolyte solutions. Fluid Phase Equilibria, 2004, 221, 189-196.	1.4	11
58	A new model for predicting activity coefficients in aqueous solutions of amino acids and peptides. Journal of Chemical Thermodynamics, 2003, 35, 101-112.	1.0	27
59	Measurement and correlation of the individual ionic activity coefficients of aqueous electrolyte solutions of KF, NaF and KBr. Canadian Journal of Chemical Engineering, 2000, 78, 175-181.	0.9	31
60	Application of the MSA to the modeling of the activity coefficients of individual ions. Fluid Phase Equilibria, 2000, 167, 161-171.	1.4	14
61	Correlation of Activity Coefficients in Electrolyte Solutions Using a Kelvin Hard Sphereâ~'Mean Spherical Approximation (K-MSA) Model. Industrial & Engineering Chemistry Research, 2000, 39, 759-766.	1.8	22
62	Individual anionic activity coefficients in aqueous electrolyte solutions of LiCl and LiBr. Fluid Phase Equilibria, 1999, 166, 67-77.	1.4	33