Beomjin Kwon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/191023/publications.pdf

Version: 2024-02-01

361413 377865 1,239 47 20 34 h-index citations g-index papers 47 47 47 1689 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deep Learning of Forced Convection Heat Transfer. Journal of Heat Transfer, 2022, 144, .	2.1	4
2	Machine learning to predict effective reaction rates in 3D porous media from pore structural features. Scientific Reports, 2022, 12, 5486.	3.3	8
3	Continuous Nanoparticle Patterning Strategy in Layerâ€Structured Nanocomposite Fibers. Advanced Functional Materials, 2022, 32, .	14.9	5
4	A two-dimensional finite element model for Cu-CNT composite: The impact of interface resistances on electrical and thermal transports. Materialia, 2022, 24, 101505.	2.7	1
5	Porous organic filler for high efficiency of flexible thermoelectric generator. Nano Energy, 2021, 81, 105604.	16.0	58
6	Composition-segmented BiSbTe thermoelectric generator fabricated by multimaterial 3D printing. Nano Energy, 2021, 81, 105638.	16.0	43
7	Cu2Se-based thermoelectric cellular architectures for efficient and durable power generation. Nature Communications, 2021, 12, 3550.	12.8	41
8	Thermal conductivity of metal coated polymer foam: Integrated experimental and modeling study. International Journal of Thermal Sciences, 2021, 169, 107045.	4.9	9
9	Air Jet Impingement Cooling of Electronic Devices Using Additively Manufactured Nozzles. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 220-229.	2.5	52
10	Machine learning for heat transfer correlations. International Communications in Heat and Mass Transfer, 2020, 116, 104694.	5 . 6	64
11	A composite phase change material thermal buffer based on porous metal foam and low-melting-temperature metal alloy. Applied Physics Letters, 2020, 116, .	3 . 3	31
12	Computationally efficient optimization of wavy surface roughness in cooling channels using simulated annealing. International Journal of Heat and Mass Transfer, 2020, 150, 119300.	4.8	9
13	Heuristic Optimization of Ribbed Cooling Channels With Variable Length and Roughness. Journal of Heat Transfer, 2020, 142, .	2.1	1
14	Machine learning flow regime classification in three-dimensional printed tubes. Physical Review Fluids, 2020, 5, .	2.5	1
15	Optimization of Liquid Cooling Microchannel in 3D IC using Complete Converging and Diverging Channel Models., 2019,,.		2
16	An Integrated Liquid Metal Thermal Switch for Active Thermal Management of Electronics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 2341-2351.	2.5	28
17	Heat transfer enhancement of internal laminar flows using additively manufactured static mixers. International Journal of Heat and Mass Transfer, 2019, 137, 292-300.	4.8	47
18	High power density two-phase cooling in microchannel heat exchangers. Applied Thermal Engineering, 2019, 148, 1271-1277.	6.0	17

#	Article	IF	CITATIONS
19	Millimeter-scale liquid metal droplet thermal switch. Applied Physics Letters, 2018, 112, .	3.3	44
20	3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nature Energy, 2018, 3, 301-309.	39.5	237
21	High power density air-cooled microchannel heat exchanger. International Journal of Heat and Mass Transfer, 2018, 118, 1276-1283.	4.8	21
22	Accurate Models for Optimizing Tapered Microchannel Heat Sinks in 3D ICs., 2018,,.		6
23	Design and Experimental Investigation of Thermoelectric Generators for Wearable Applications. Advanced Materials Technologies, 2017, 2, 1600292.	5.8	28
24	Microscale transport physics during atomic force microscopy mass spectrometry and improved sampling efficiency. , 2017, , .		0
25	Harman Measurements for Thermoelectric Materials and Modules under Non-Adiabatic Conditions. Scientific Reports, 2016, 6, 39131.	3.3	19
26	Effect of spark plasma sintering conditions on the thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys. Journal of Alloys and Compounds, 2016, 678, 396-402.	5.5	25
27	Correction of the Electrical and Thermal Extrinsic Effects in Thermoelectric Measurements by the Harman Method. Scientific Reports, 2016, 6, 26507.	3.3	11
28	Enhancement of Mechanical Hardness in $SnO(sub)(i)x(i)(sub)N(sub)(i)y(i)(sub)$ with a Dense High-Pressure Cubic Phase of $SnO(sub)(sub)(s$	6.7	23
29	High-performance shape-engineerable thermoelectric painting. Nature Communications, 2016, 7, 13403.	12.8	122
30	Free-electron creation at the $60 \hat{A}^{\circ}$ twin boundary in Bi2Te3. Nature Communications, 2016, 7, 12449.	12.8	59
31	Glancing angle deposited WO 3 nanostructures for enhanced sensitivity and selectivity to NO 2 in gas mixture. Sensors and Actuators B: Chemical, 2016, 229, 92-99.	7.8	28
32	Thickness-Dependent Electrocaloric Effect in Pb0.9La0.1Zr0.65Ti0.35O3 Films Grown by Sol–Gel Process. Journal of Electronic Materials, 2016, 45, 1057-1064.	2.2	12
33	Giant Electroresistive Ferroelectric Diode on 2DEG. Scientific Reports, 2015, 5, 10548.	3.3	10
34	Hardening of Bi–Te based alloys by dispersing B4C nanoparticles. Acta Materialia, 2015, 97, 68-74.	7.9	19
35	Electric-field-induced Shift in the Threshold Voltage in LaAlO3/SrTiO3 Heterostructures. Scientific Reports, 2015, 5, 8023.	3.3	13
36	Effect of Sn Doping on the Thermoelectric Properties of n-type Bi2(Te,Se)3 Alloys. Journal of Electronic Materials, 2015, 44, 1926-1930.	2.2	8

#	Article	IF	CITATIONS
37	A differential method for measuring cooling performance of a thermoelectric module. Applied Thermal Engineering, 2015, 87, 209-213.	6.0	3
38	Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition. Applied Surface Science, 2015, 353, 232-237.	6.1	18
39	Thermoelectric Properties of Sn-Doped Bi0.4Sb1.6Te3 Thin Films. Journal of Electronic Materials, 2015, 44, 1573-1578.	2.2	3
40	Dynamic temperature response of electrocaloric multilayer capacitors. Applied Physics Letters, 2014, 104, .	3.3	11
41	Impact of parasitic thermal effects on thermoelectric property measurements by Harman method. Review of Scientific Instruments, 2014, 85, 045108.	1.3	21
42	SnO 2 thin films grown by atomic layer deposition using a novel Sn precursor. Applied Surface Science, 2014, 320, 188-194.	6.1	35
43	Electrocaloric Effect in Pb _{0.865} 1.500.092.500.093550.3590 ₃ 71 _{90<su< td=""><td>0.2</td><td>1</td></su<>}}}	0.2	1
44	Bimaterial microcantilevers with black silicon nanocone arrays. Sensors and Actuators A: Physical, 2013, 199, 143-148.	4.1	13
45	Large infrared absorptance of bimaterial microcantilevers based on silicon high contrast grating. Journal of Applied Physics, 2013, 114, 153511.	2.5	3
46	Dynamic thermomechanical response of bimaterial microcantilevers to periodic heating by infrared radiation. Review of Scientific Instruments, 2012, 83, 015003.	1.3	20
47	Impact of silicon nitride thickness on the infrared sensitivity of silicon nitride–aluminum microcantilevers. Sensors and Actuators A: Physical, 2012, 185, 17-23.	4.1	5