Xiangming Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1910211/publications.pdf Version: 2024-02-01

XIANCMING LI

#	Article	IF	CITATIONS
1	Metal Micropatterning by Triboelectric Spark Discharge. Advanced Functional Materials, 2022, 32, .	14.9	7
2	Bioinspired Hierarchical Structures for Contactâ€6ensible Adhesives. Advanced Functional Materials, 2022, 32, 2109076.	14.9	30
3	Self-healing and stretchable conductor based on embedded liquid metal patterns within imprintable dynamic covalent elastomer. Journal of Materials Chemistry C, 2022, 10, 1039-1047.	5.5	23
4	Metal Micropatterning by Triboelectric Spark Discharge (Adv. Funct. Mater. 1/2022). Advanced Functional Materials, 2022, 32, .	14.9	1
5	Compact 3D Metal Collectors Enabled by Rollâ€ŧoâ€Roll Nanoimprinting for Improving Capacitive Energy Storage. Small Methods, 2022, 6, e2101539.	8.6	5
6	High performance solid-state supercapacitors based on highly conductive organogel electrolyte at low temperature. Journal of Power Sources, 2022, 524, 231102.	7.8	17
7	Understanding the Capacitive Charge in Bulk Porous Electrodes by Mathematical Modeling. Physical Review Applied, 2022, 17, .	3.8	2
8	Electrowetting-on-dielectric powered by triboelectric nanogenerator. Nano Energy, 2022, 98, 107310.	16.0	8
9	Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low–melting point alloy. Science Advances, 2022, 8, eabn5722.	10.3	46
10	Gecko-Inspired Slant Hierarchical Microstructure-Based Ultrasensitive Iontronic Pressure Sensor for Intelligent Interaction. Research, 2022, 2022, .	5.7	14
11	Highâ€Performance Packaged 3D Lithiumâ€Ion Microbatteries Fabricated Using Imprint Lithography. Advanced Materials, 2021, 33, e2006229.	21.0	43
12	Discretely-supported nanoimprint lithography for patterning the high-spatial-frequency stepped surface. Nano Research, 2021, 14, 2606-2612.	10.4	7
13	Tuning the Mechanical and Electrical Properties of Porous Electrodes for Architecting 3D Microsupercapacitors with Batteries‣evel Energy. Advanced Science, 2021, 8, e2004957.	11.2	16
14	Channel-Crack-Designed Suspended Sensing Membrane as a Fully Flexible Vibration Sensor with High Sensitivity and Dynamic Range. ACS Applied Materials & Interfaces, 2021, 13, 34637-34647.	8.0	24
15	High-Performance Transparent and Conductive Films with Fully Enclosed Metal Mesh. ACS Applied Materials & Interfaces, 2021, 13, 40806-40816.	8.0	15
16	Flexible strain sensor based on embedded three-dimensional annular cracks with high mechanical robustness and high sensitivity. Applied Materials Today, 2021, 25, 101247.	4.3	11
17	High-transmittance and focal controllable plano-convex lenses with embedded nanolens bottoms formed by electrowetting on a colloidal monolayer. Journal of Materials Chemistry C, 2020, 8, 2659-2663.	5.5	8
18	Flexible Double-Sided Light-Emitting Devices Based on Transparent Embedded Interdigital Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 43892-43900.	8.0	10

XIANGMING LI

#	Article	IF	CITATIONS
19	An Electrically Actuated Soft Artificial Muscle Based on a High-Performance Flexible Electrothermal Film and Liquid-Crystal Elastomer. ACS Applied Materials & Interfaces, 2020, 12, 56338-56349.	8.0	44
20	Scalable Imprinting of Flexible Multiplexed Sensor Arrays with Distributed Piezoelectricityâ€Enhanced Micropillars for Dynamic Tactile Sensing. Advanced Materials Technologies, 2020, 5, 2000046.	5.8	45
21	An electrically active gecko-effect soft gripper under a low voltage by mimicking gecko's adhesive structures and toe muscles. Soft Matter, 2020, 16, 5599-5608.	2.7	38
22	Scalable fabrication of high-performance micro-supercapacitors by embedding thick interdigital microelectrodes into microcavities. Nanoscale, 2019, 11, 19772-19782.	5.6	7
23	Geckoâ€Effect Inspired Soft Gripper with High and Switchable Adhesion for Rough Surfaces. Advanced Materials Interfaces, 2019, 6, 1900875.	3.7	29
24	Soft Gripper: Geckoâ€Effect Inspired Soft Gripper with High and Switchable Adhesion for Rough Surfaces (Adv. Mater. Interfaces 18/2019). Advanced Materials Interfaces, 2019, 6, 1970119.	3.7	1
25	Suspended-Template Electric-Assisted Nanoimprinting for Hierarchical Micro-Nanostructures on a Fragile Substrate. ACS Nano, 2019, 13, 10333-10342.	14.6	18
26	Nanoimprint lithography for the manufacturing of flexible electronics. Science China Technological Sciences, 2019, 62, 175-198.	4.0	88
27	Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays. ACS Applied Materials & Interfaces, 2019, 11, 17796-17803.	8.0	292
28	High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nature Communications, 2018, 9, 2578.	12.8	121
29	Friction Contribution to Bioinspired Mushroomâ€6haped Dry Adhesives. Advanced Materials Interfaces, 2017, 4, 1700016.	3.7	29
30	Discretely Supported Dry Adhesive Film Inspired by Biological Bending Behavior for Enhanced Performance on a Rough Surface. ACS Applied Materials & Interfaces, 2017, 9, 7752-7760.	8.0	47
31	Dielectrophoretic-Assembled Single and Parallel-Aligned Ag Nanowire–ZnO-Branched Nanorod Heteronanowire Ultraviolet Photodetectors. ACS Applied Materials & Interfaces, 2017, 9, 22837-22845.	8.0	31
32	Photoresponse Performance Evaluation of ZnO UV Photodetector Based on Noise Analysis. IEEE Sensors Journal, 2017, 17, 4447-4453.	4.7	9
33	Flexible and Transparent Strain Sensors with Embedded Multiwalled Carbon Nanotubes Meshes. ACS Applied Materials & Interfaces, 2017, 9, 40681-40689.	8.0	114
34	Nanoscale Electrodes for Flexible Electronics by Swelling Controlled Cracking. Advanced Materials, 2016, 28, 6337-6344.	21.0	34
35	Switchable Dry Adhesion with Step-like Micropillars and Controllable Interfacial Contact. ACS Applied Materials & Interfaces, 2016, 8, 10029-10037.	8.0	58
36	Shape-controllable plano-convex lenses with enhanced transmittance via electrowetting on a nanotextured dielectric. Journal of Materials Chemistry C, 2016, 4, 9162-9166.	5.5	9

XIANGMING LI

#	Article	IF	CITATIONS
37	A photocurable leaky dielectric for highly electrical insulating electrohydrodynamic micro-/nanopatterns. Soft Matter, 2016, 12, 8819-8824.	2.7	9
38	Nanoscale Electrodes: Nanoscale Electrodes for Flexible Electronics by Swelling Controlled Cracking (Adv. Mater. 30/2016). Advanced Materials, 2016, 28, 6516-6516.	21.0	2
39	Decreasing the Saturated Contact Angle in Electrowettingâ€onâ€Dielectrics by Controlling the Charge Trapping at Liquid–Solid Interfaces. Advanced Functional Materials, 2016, 26, 2994-3002.	14.9	86
40	Step-Controllable Electric-Field-Assisted Nanoimprint Lithography for Uneven Large-Area Substrates. ACS Nano, 2016, 10, 4354-4363.	14.6	25
41	A Flexible Piezoelectric-Pyroelectric Hybrid Nanogenerator Based on P(VDF-TrFE) Nanowire Array. IEEE Nanotechnology Magazine, 2016, 15, 295-302.	2.0	55
42	One-Dimensional Au–ZnO Heteronanostructures for Ultraviolet Light Detectors by a Two-Step Dielectrophoretic Assembly Method. ACS Applied Materials & Interfaces, 2015, 7, 12713-12718.	8.0	38
43	Effect of island shape on dielectrophoretic assembly of metal nanoparticle chains in a conductive-island-based microelectrode system. Applied Surface Science, 2015, 330, 178-184.	6.1	5
44	Rectangle-capped and tilted micropillar array for enhanced anisotropic anti-shearing in biomimetic adhesion. Journal of the Royal Society Interface, 2015, 12, 20150090.	3.4	26
45	Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. Journal of Materials Chemistry C, 2015, 3, 11806-11814.	5.5	171
46	Simulation of polymer rheology in an electrically induced micro- or nano-structuring process based on electrohydrodynamics and conservative level set method. RSC Advances, 2014, 4, 21672.	3.6	13
47	Electrowetting Assisted Air Detrapping in Transfer Micromolding for Difficult-to-Mold Microstructures. ACS Applied Materials & Interfaces, 2014, 6, 12737-12743.	8.0	25
48	Electrically Templated Dewetting of a UV-Curable Prepolymer Film for the Fabrication of a Concave Microlens Array with Well-Defined Curvature. ACS Applied Materials & Interfaces, 2013, 5, 9975-9982.	8.0	63
49	Formation of irregular micro- or nano-structure with features of varying size by spatial fine-modulation of electric field. Soft Matter, 2013, 9, 8033.	2.7	26
50	Electrically Modulated Microtransfer Molding for Fabrication of Micropillar Arrays with Spatially Varying Heights. Langmuir, 2013, 29, 1351-1355.	3.5	26
51	Fabrication of Microlens Arrays with Wellâ€controlled Curvature by Liquid Trapping and Electrohydrodynamic Deformation in Microholes. Advanced Materials, 2012, 24, OP165-9, OP90.	21.0	48
52	Microlens Arrays: Fabrication of Microlens Arrays with Well-controlled Curvature by Liquid Trapping and Electrohydrodynamic Deformation in Microholes (Adv. Mater. 23/2012). Advanced Materials, 2012, 24, OP90-OP90.	21.0	15
53	Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes. Optics Letters, 2011, 36, 4083.	3.3	39
54	Influence of distorted electric field distribution on microstructure formation in the electrohydrodynamic patterning process. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 041606.	1.2	8