List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1910017/publications.pdf Version: 2024-02-01

YU-YONG CHEN

#	Article	IF	CITATIONS
1	Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy. Materials & Design, 2014, 55, 183-190.	5.1	124
2	Effect of aging heat treatment on microstructure and tensile properties of a new \hat{l}^2 high strength titanium alloy. Journal of Alloys and Compounds, 2014, 586, 588-592.	5.5	99
3	Microstructure and fracture toughness of a \hat{I}^2 phase containing TiAl alloy. Intermetallics, 2011, 19, 1405-1410.	3.9	80
4	Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties. Materials and Design, 2017, 121, 202-212.	7.0	70
5	Effects of direct rolling deformation on the microstructure and tensile properties of the 2.5 vol% (TiB w +TiC p)/Ti composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 645-651.	5.6	59
6	Hot deformation behavior and dynamic recrystallization of a Î ² -solidifying TiAl alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 652, 231-238.	5.6	55
7	High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling. Journal of Alloys and Compounds, 2017, 695, 3495-3502.	5.5	49
8	The effect of carbon addition on the high-temperature properties of \hat{I}^2 solidification TiAl alloys. Journal of Alloys and Compounds, 2019, 775, 441-448.	5.5	49
9	Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 713, 195-205.	5.6	48
10	Microstructural evolution, hot workability, and mechanical properties of Ti–43Al–2Cr–2Mn–0.2Y alloy. Materials and Design, 2016, 89, 1020-1027.	7.0	47
11	Grain refinement by trace TiB2 addition in conventional cast TiAl-based alloy. Materials Characterization, 2015, 106, 112-122.	4.4	44
12	Effect of Nb addition on microstructure, mechanical properties and castability of β-type Ti–Mo alloys. Transactions of Nonferrous Metals Society of China, 2015, 25, 2214-2220.	4.2	44
13	Microstructure and mechanical properties of large size Ti-43Al-9V-0.2Y alloy pancake produced by pack-forging. Intermetallics, 2013, 34, 29-34.	3.9	43
14	Characterization of hot deformation behavior of as-forged TiAl alloy. Intermetallics, 2014, 55, 66-72.	3.9	41
15	The effect of boron addition on the high-temperature properties and microstructure evolution of high Nb containing TiAl alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 190-198.	5.6	37
16	Influence of nano-Y2O3 addition on microstructure and tensile properties of high-Al TiAl alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 794, 139803.	5.6	35
17	A high-performance Î ² -solidifying TiAl alloy sheet: Multi-type lamellar microstructure and phase transformation. Materials Characterization, 2018, 138, 136-144.	4.4	34
18	Relationships among reinforcement volume fraction, microstructure and tensile properties of (TiB w) Tj ETQq0 0 C) rgBT /0\ 5.6	verlock 10 Tf 33

Properties, Microstructure and Processing, 2017, 701, 16-23.

#	Article	IF	CITATIONS
19	Effects of carbon and boron addition on microstructure and mechanical properties of TiAl alloys. Journal of Alloys and Compounds, 2017, 728, 206-221.	5.5	33
20	Effect of Yttrium Addition on Microstructures and Room Temperature Tensile Properties of Ti-47 Al Alloy. Journal of Rare Earths, 2006, 24, 352-356.	4.8	32
21	Microstructure evolution during forging deformation of (TiB+TiC+Y2O3)/α-Ti composite: DRX and globularization behavior. Journal of Alloys and Compounds, 2020, 827, 154170.	5.5	32
22	Microstructure evolution and tensile properties of conventional cast TiAl-based alloy with trace Ni addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 715, 41-48.	5.6	31
23	Hot deformation behavior and microstructural evolution of as-forged Ti-44Al-8Nb-(W, B, Y) alloy with nearly lamellar microstructure. Intermetallics, 2017, 81, 62-72.	3.9	30
24	The effect of nano-Y2O3 addition on tensile properties and creep behavior of as-cast TiAl alloy. Journal of Alloys and Compounds, 2020, 825, 153852.	5.5	27
25	High temperature deformation behavior of Ti–46Al–2Cr–4Nb–0.2Y alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 539, 107-114.	5.6	25
26	Microstructure, texture and mechanical properties of Ti-43Al-9V-0.2Y alloy hot-rolled at various temperatures. Journal of Alloys and Compounds, 2019, 777, 795-805.	5.5	24
27	Effects of minor yttrium addition on hot deformability of lamellar Ti-45Al-5Nb alloy. Transactions of Nonferrous Metals Society of China, 2007, 17, 58-63.	4.2	23
28	Microstructure characterization, mechanical properties and toughening mechanism of TiB 2 -containing conventional cast TiAl-based alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 8-19.	5.6	23
29	Mechanical properties, deformation behavior and microstructure evolution of Ti-43Al-6Nb-1Mo-1Cr alloys. Materials Characterization, 2018, 136, 69-83.	4.4	23
30	Effect of nano Y2O3 addition on microstructure and room temperature tensile properties of Ti–48Al–2Cr–2Nb alloy. Vacuum, 2019, 170, 108779.	3.5	23
31	High-temperature microstructure stability and fracture toughness of TiAl alloy prepared via electron beam smelting and selective electron beam melting. Intermetallics, 2021, 136, 107259.	3.9	23
32	Ti–Nb–Sn–hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 2074-2080.	3.1	22
33	Effect of TiB2 addition on microstructure and fluidity of cast TiAl alloy. Vacuum, 2020, 174, 109210.	3.5	22
34	High temperature tensile properties and fracture behavior of Y2O3-bearing Ti-48Al-2Cr-2Nb alloy. Intermetallics, 2020, 126, 106933.	3.9	22
35	Phase transformations of the L1 2 -Ti 3 Al phase in Î ³ -TiAl alloy. Materials and Design, 2017, 121, 61-68.	7.0	21
36	High temperature tensile properties, deformation, and fracture behavior of a hybrid-reinforced titanium alloy composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139516.	5.6	21

#	Article	IF	CITATIONS
37	Microstructure and mechanical properties of large size as-cast Ti–43Al–9V–0.2Y (at.%) alloy ingot from brim to centre. Materials & Design, 2012, 33, 485-490.	5.1	19
38	The tensile and fracture toughness properties of a (TiBw + TiCp)/Ti–3.5Al–5Mo–6V–3Cr–2Sn–0 composites after heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 21-28.).5Fe 5.6	19
39	Relationship between microstructure and tensile properties on a near- \hat{I}^2 titanium alloy after multidirectional forging and heat treatment. Rare Metals, 2019, 38, 336-342.	7.1	17
40	Effect of residual stresses on the mechanical properties of Ti-TiAl laminate composites fabricated by hot-pack rolling. Materials Characterization, 2020, 166, 110394.	4.4	17
41	Elevated temperature performance and creep behavior of Y2O3 reinforced Ti-48Al-6Nb alloy at the brittle-ductile transition temperature. Journal of Alloys and Compounds, 2021, 871, 159497.	5.5	17
42	Microstructural modulation of TiAl alloys for controlling ultra-precision machinability. International Journal of Machine Tools and Manufacture, 2022, 174, 103851.	13.4	17
43	Microstructure characterization and tensile properties of a Ni-containing TiAl-based alloy with heat treatment. Rare Metals, 2016, 35, 26-34.	7.1	16
44	Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets. Progress in Natural Science: Materials International, 2018, 28, 711-717.	4.4	16
45	Improving mechanical properties of near beta titanium alloy by high-low duplex aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 702-707.	5.6	16
46	Effect of nano-Y2O3 addition on the creep behavior of an as-cast near-α titanium alloy. Materials Characterization, 2021, 178, 111249.	4.4	16
47	Effect of solution treatment and aging on microstructure, tensile properties and creep behavior of a hot-rolled β high strength titanium alloy with a composition of Ti-3.5Al–5Mo–6V–3Cr–2Sn-0.5Fe-0.1B-0.1C. Materials Science & amp; Engineering A: Structural Materials Properties, Microstructure and Processing, 2021, 823, 141728.	5.6	16
48	The effect of boron addition on the deformation behavior and microstructure of Î ² -solidify TiAl alloys. Materials Characterization, 2018, 145, 312-322.	4.4	15
49	A Novel Composition Design Method for Beta-Gamma TiAl Alloys with Excellent Hot Workability. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5574-5584.	2.2	15
50	Metastable phase and microstructural degradation of a TiAl alloy produced via selective electron beam melting. Vacuum, 2021, 192, 110491.	3.5	15
51	Selective Electron Beam Melting of TiAl Alloy: Metallurgical Defects, Tensile Property, and Determination of Process Window. Advanced Engineering Materials, 2020, 22, 2000194.	3.5	15
52	A high-performance β-stabilized Ti-43Al-9V-0.2Y alloy sheet with a nano-scaled antiphase domain. Materials Letters, 2018, 214, 182-185.	2.6	14
53	The tensile creep behavior of a B4C-bearing high Nb containing TiAl alloy. Intermetallics, 2022, 141, 107410.	3.9	14
54	Effects of yttrium on microstructures and properties of Ti-17Al-27Nb alloy. Transactions of Nonferrous Metals Society of China, 2006, 16, 316-320.	4.2	13

#	Article	IF	CITATIONS
55	Evolution of grain boundary and texture in as-forged Ti–45Al–9Nb–Y alloy during tensile test at different temperature. Intermetallics, 2012, 27, 31-37.	3.9	13
56	Hot Deformation Behavior of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe Alloy in α + β Field. Metals, 2015, 5, 216-227.	2.3	13
57	Microstructure and properties of a beta-solidifying TiAl-based alloy with different refiners. Rare Metals, 2016, 35, 42-47.	7.1	13
58	The improved properties and microstructure of β-solidify TiAl alloys by boron addition and multi steps forging process. Scientific Reports, 2019, 9, 12393.	3.3	13
59	Deformation behavior and microstructure evolution of as-cast Ti2ZrMo0.5Nb0.5 high entropy alloy. Journal of Materials Research and Technology, 2021, 13, 2469-2481.	5.8	13
60	Low-temperature superplasticity of β-stabilized Ti-43Al-9V-Y alloy sheet with bimodal γ-grain-size distribution. Journal of Materials Science and Technology, 2021, 95, 225-236.	10.7	13
61	Microstructure and high-temperature tensile property of TiAl alloy produced by selective electron beam melting. Rare Metals, 2021, 40, 3635-3644.	7.1	12
62	Prediction of interfacial phase formation and mechanical properties of Ti6Al4V–Ti43Al9V laminate composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 139173.	5.6	12
63	Microstructure evolution, mechanical properties and high temperature deformation of (TiBÂ+ÂTiC)/Ti–3.5Al–5Mo–6V–3Cr–2Sn–0.5Fe titanium alloy. Materials Characterization, 2022,	184, ⁴ 141616	. 12
64	Creep deformation and rupture behavior of a high Nb containing TiAl alloy reinforced with Y2O3 particles. Materials Characterization, 2021, 179, 111355.	4.4	11
65	The α phase recrystallization mechanism and mechanical properties of a near-α titanium matrix composite. Intermetallics, 2022, 147, 107597.	3.9	11
66	Tribological behavior study on Ti–Nb–Sn/hydroxyapatite composites in simulated body fluid solution. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10, 97-107.	3.1	10
67	The investigation of microstructure evolution, deformation behavior and processing performance of the high niobium containing TiAl alloys. Intermetallics, 2021, 138, 107336.	3.9	10
68	Effect of TiB, TiC and Y2O3 on tensile properties and creep behavior at $650\hat{A}\hat{a}_{,,f}$ of titanium matrix composites. Journal of Alloys and Compounds, 2022, 908, 164699.	5.5	10
69	Dynamic Recrystallization of the Constituent Î ³ Phase and Mechanical Properties of Ti-43Al-9V-0.2Y Alloy Sheet. Materials, 2017, 10, 1089.	2.9	9
70	Microstructure Evolution and Mechanical Properties of PM-Ti43Al9V0.3Y Alloy. Materials, 2020, 13, 198.	2.9	9
71	The high temperature wetting and corrosion mechanism analysis of Nb by TiAl alloy melt. Corrosion Science, 2021, 186, 109316.	6.6	9
72	Spheroidization behavior of (TiB+TiC+Y2O3)∫α-Ti alloy during annealing. Journal of Alloys and Compounds, 2022, 893, 162312.	5.5	9

#	Article	IF	CITATIONS
73	Microstructure evolution of Ti–46Al–6Nb–(Si,B) alloys during heat treatment with W addition. Rare Metals, 2016, 35, 85-92.	7.1	8
74	Microscale investigation of perovskite-Ti3AlC strengthening and plastic deformation in high niobium containing TiAl alloys. Journal of Alloys and Compounds, 2021, 857, 157563.	5.5	8
75	Modeling of TiAl Alloy Grating by Investment Casting. Metals, 2015, 5, 2328-2339.	2.3	7
76	The Influences of Process Annealing Temperature on Microstructure and Mechanical Properties of near β High Strength Titanium Alloy Sheet. Materials, 2019, 12, 1478.	2.9	7
77	Effect of cooling rate on solidification microstructure and mechanical properties of TiB2-containing TiAl alloy. Transactions of Nonferrous Metals Society of China, 2021, 31, 391-403.	4.2	7
78	High Nb–TiAl Intermetallic Blades Fabricated by Isothermal Die Forging Process at Low Temperature. Metals, 2020, 10, 757.	2.3	6
79	The effect of deformation parameters on the dynamic recrystallization and microstructure evolution of the quasi-continuous network reinforced TiAl/B4C composites. Journal of Materials Science, 2022, 57, 11748-11760.	3.7	5
80	SYNTHESIS OF NANOSTRUCTURED GAMMA-TIAI BASED POWDERS AND BULK ALLOYS USING HIGH ENERGY MECHANICAL MILLING AND HIP. International Journal of Modern Physics B, 2006, 20, 4183-4188.	2.0	4
81	Hot Deformation Behavior and Hot Rolling Properties of a Nano-Y2O3 Addition Near-α Titanium Alloy. Metals, 2021, 11, 837.	2.3	3
82	Fabrication of Thin-Walled High Temperature Titanium Alloy Component by Investment Casting. Materials and Manufacturing Processes, 0, , 121130131826005.	4.7	2
83	Hot Deformation Behavior and Microstructural Evolution of PM Ti43Al9V0.3Y with Fine Equiaxed Î ³ and B2 Grain Microstructure. Materials, 2020, 13, 896.	2.9	2
84	Microstructural Characterization of Melt Extracted High-Nb-Containing TiAl-Based Fiber. Materials, 2017, 10, 195.	2.9	1
85	Low Temperature Phase Transformations in Copper-Quenched Ti-44.5Al-8Nb-2.5V Alloy. Materials, 2017, 10, 201.	2.9	1
86	Direct Rolling of TiC p /Ti–6Al–4V Composite for Improved Microstructure, Mechanical Properties, and Highâ€īemperature Oxidation Resistance. Advanced Engineering Materials, 2021, 23, 2100079.	3.5	1
87	EFFECTS OF THERMO-MECHANICAL TREATMENTS ON MICROSTRUCTURE OF Ti-43Al-9V-Y ALLOY. International Journal of Modern Physics B, 2009, 23, 1009-1013.	2.0	0
88	The Difference of Lamellar Structure Formation between Ti-45Al-5.4V-3.6Nb-Y Alloy and Ti-44Al-4Nb-4V-0.3Mo-Y Alloy. Metals, 2018, 8, 566.	2.3	0
89	Self-Induced Internal Corrosion Stress Transgranular Cracking in Gradient-Structural Ploycrystalline Materials at High Temperature. Metals, 2021, 11, 1465.	2.3	0