

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1909968/publications.pdf Version: 2024-02-01



XI YAO

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chemical<br>Reviews, 2015, 115, 8230-8293.                                          | 47.7 | 1,292     |
| 2  | Applications of Bioâ€Inspired Special Wettable Surfaces. Advanced Materials, 2011, 23, 719-734.                                                                                  | 21.0 | 961       |
| 3  | Recent developments in bio-inspired special wettability. Chemical Society Reviews, 2010, 39, 3240.                                                                               | 38.1 | 922       |
| 4  | The Dry‣tyle Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography. Advanced Materials, 2007, 19, 2213-2217.                    | 21.0 | 884       |
| 5  | Adaptive fluid-infused porous films with tunable transparency and wettability. Nature Materials, 2013, 12, 529-534.                                                              | 27.5 | 481       |
| 6  | Bioinspired Conical Copper Wire with Gradient Wettability for Continuous and Efficient Fog<br>Collection. Advanced Materials, 2013, 25, 5937-5942.                               | 21.0 | 289       |
| 7  | Curvatureâ€Driven Reversible In Situ Switching Between Pinned and Rollâ€Down Superhydrophobic States<br>for Water Droplet Transportation. Advanced Materials, 2011, 23, 545-549. | 21.0 | 268       |
| 8  | Stretchable materials of high toughness and low hysteresis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5967-5972.               | 7.1  | 253       |
| 9  | Three-dimensional capillary ratchet-induced liquid directional steering. Science, 2021, 373, 1344-1348.                                                                          | 12.6 | 223       |
| 10 | Janus effect of antifreeze proteins on ice nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14739-14744.                  | 7.1  | 205       |
| 11 | Self-removal of condensed water on the legs of water striders. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9247-9252.            | 7.1  | 194       |
| 12 | Underwater Oil Capture by a Threeâ€Dimensional Network Architectured Organosilane Surface.<br>Advanced Materials, 2011, 23, 2861-2864.                                           | 21.0 | 192       |
| 13 | Bioinspired Ribbed Nanoneedles with Robust Superhydrophobicity. Advanced Functional Materials, 2010, 20, 656-662.                                                                | 14.9 | 182       |
| 14 | A Mechanically Robust Conducting Polymer Network Electrode for Efficient Flexible Perovskite Solar<br>Cells. Joule, 2019, 3, 2205-2218.                                          | 24.0 | 175       |
| 15 | Fabrication of Transparent Multilayer Circuits by Inkjet Printing. Advanced Materials, 2016, 28,<br>1420-1426.                                                                   | 21.0 | 172       |
| 16 | Superoleophobic Surfaces with Controllable Oil Adhesion and Their Application in Oil<br>Transportation. Advanced Functional Materials, 2011, 21, 4270-4276.                      | 14.9 | 171       |
| 17 | Temperatureâ€Driven Switching of Water Adhesion on Organogel Surface. Advanced Materials, 2014, 26,<br>1895-1900.                                                                | 21.0 | 165       |
| 18 | Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Research, 2020, 13, 3048-3056.                         | 10.4 | 163       |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Fluorogel Elastomers with Tunable Transparency, Elasticity, Shapeâ€Memory, and Antifouling<br>Properties. Angewandte Chemie - International Edition, 2014, 53, 4418-4422.                      | 13.8 | 161       |
| 20 | Hydrogel Paint. Advanced Materials, 2019, 31, e1903062.                                                                                                                                        | 21.0 | 146       |
| 21 | Cactus Stem Inspired Coneâ€Arrayed Surfaces for Efficient Fog Collection. Advanced Functional<br>Materials, 2014, 24, 6933-6938.                                                               | 14.9 | 142       |
| 22 | Highly Brilliant Noniridescent Structural Colors Enabled by Graphene Nanosheets Containing<br>Graphene Quantum Dots. Advanced Functional Materials, 2018, 28, 1802585.                         | 14.9 | 137       |
| 23 | Supramolecular silicone coating capable of strong substrate bonding, readily damage healing, and easy oil sliding. Science Advances, 2019, 5, eaaw5643.                                        | 10.3 | 132       |
| 24 | Selfâ€Healable Organogel Nanocomposite with Angleâ€Independent Structural Colors. Angewandte<br>Chemie - International Edition, 2017, 56, 10462-10466.                                         | 13.8 | 131       |
| 25 | Development of "Liquid-like―Copolymer Nanocoatings for Reactive Oil-Repellent Surface. ACS Nano,<br>2017, 11, 2248-2256.                                                                       | 14.6 | 130       |
| 26 | Multiphaseâ€Assembly of Siloxane Oligomers with Improved Mechanical Strength and Waterâ€Enhanced<br>Healing. Angewandte Chemie - International Edition, 2018, 57, 11242-11246.                 | 13.8 | 129       |
| 27 | Large cale Fabrication of Bioinspired Fibers for Directional Water Collection. Small, 2011, 7, 3429-3433.                                                                                      | 10.0 | 119       |
| 28 | Directional pumping of water and oil microdroplets on slippery surface. Proceedings of the National<br>Academy of Sciences of the United States of America, 2019, 116, 2482-2487.              | 7.1  | 119       |
| 29 | Wearable and Washable Conductors for Active Textiles. ACS Applied Materials & Interfaces, 2017, 9, 25542-25552.                                                                                | 8.0  | 118       |
| 30 | Organogel as durable anti-icing coatings. Science China Materials, 2015, 58, 559-565.                                                                                                          | 6.3  | 116       |
| 31 | Effects of Rugged Nanoprotrusions on the Surface Hydrophobicity and Water Adhesion of Anisotropic Micropatterns. Langmuir, 2007, 23, 4886-4891.                                                | 3.5  | 113       |
| 32 | Bioinspired Solid Organogel Materials with a Regenerable Sacrificial Alkane Surface Layer. Advanced<br>Materials, 2017, 29, 1700865.                                                           | 21.0 | 109       |
| 33 | Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica<br>Container for Targeting Drug Delivery. ACS Applied Materials & Interfaces, 2016, 8, 11204-11209. | 8.0  | 91        |
| 34 | A highly stretchable and robust non-fluorinated superhydrophobic surface. Journal of Materials<br>Chemistry A, 2017, 5, 16273-16280.                                                           | 10.3 | 89        |
| 35 | Sprayable superhydrophobic coating with high processibility and rapid damage-healing nature.<br>Chemical Engineering Journal, 2020, 392, 124834.                                               | 12.7 | 89        |
| 36 | Interfacial Engineering of Bimetallic Ag/Pt Nanoparticles on Reduced Graphene Oxide Matrix for<br>Enhanced Antimicrobial Activity. ACS Applied Materials & Interfaces, 2016, 8, 8834-8840.     | 8.0  | 81        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Selfâ€Replenishable Antiâ€Waxing Organogel Materials. Angewandte Chemie - International Edition, 2015,<br>54, 8975-8979.                                                                                                        | 13.8 | 71        |
| 38 | Antiadhesion Organogel Materials: From Liquid to Solid. Advanced Materials, 2017, 29, 1703032.                                                                                                                                  | 21.0 | 70        |
| 39 | Bioinspired Quasiâ€3D Multiplexed Antiâ€Counterfeit Imaging via Selfâ€Assembled and Nanoimprinted<br>Photonic Architectures. Advanced Materials, 2022, 34, e2107243.                                                            | 21.0 | 70        |
| 40 | Dynamic siloxane materials: From molecular engineering to emerging applications. Chemical<br>Engineering Journal, 2021, 405, 127023.                                                                                            | 12.7 | 69        |
| 41 | Fabrication and Characterization of Superhydrophobic Surfaces with Dynamic Stability. Advanced<br>Functional Materials, 2010, 20, 3343-3349.                                                                                    | 14.9 | 68        |
| 42 | "Water Strider―Legs with a Selfâ€Assembled Coating of Singleâ€Crystalline Nanowires of an Organic<br>Semiconductor. Advanced Materials, 2010, 22, 376-379.                                                                      | 21.0 | 65        |
| 43 | Emerging Applications of Bioinspired Slippery Surfaces in Biomedical Fields. Chemistry - A European<br>Journal, 2018, 24, 14864-14877.                                                                                          | 3.3  | 63        |
| 44 | lonotronic Luminescent Fibers, Fabrics, and Other Configurations. Advanced Materials, 2020, 32, e2005545.                                                                                                                       | 21.0 | 63        |
| 45 | Instant, Tough, Noncovalent Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 40749-40757.                                                                                                                                | 8.0  | 60        |
| 46 | Role of Redox Reaction and Electrostatics in Transition-Metal Impurity-Promoted Photoluminescence<br>Evolution of Water-Soluble ZnSe Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 7503-7510.                       | 3.1  | 56        |
| 47 | Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface.<br>Nature Communications, 2021, 12, 7136.                                                                                       | 12.8 | 51        |
| 48 | Improved air stability of perovskite hybrid solar cells via blending poly(dimethylsiloxane)–urea<br>copolymers. Journal of Materials Chemistry A, 2017, 5, 5486-5494.                                                           | 10.3 | 49        |
| 49 | Development of multifunctional liquid-infused materials by printing assisted functionalization on porous nanocomposites. Journal of Materials Chemistry A, 2018, 6, 4199-4208.                                                  | 10.3 | 47        |
| 50 | Transparent and Gasâ€Permeable Liquid Marbles for Culturing and Drug Sensitivity Test of Tumor<br>Spheroids. Advanced Healthcare Materials, 2017, 6, 1700185.                                                                   | 7.6  | 46        |
| 51 | Adhesion of Microdroplets on Water-Repellent Surfaces toward the Prevention of Surface Fouling<br>and Pathogen Spreading by Respiratory Droplets. ACS Applied Materials & Interfaces, 2017, 9,<br>6599-6608.                    | 8.0  | 45        |
| 52 | Dual-Cross-Linked Supramolecular Polysiloxanes for Mechanically Tunable, Damage-Healable and<br>Oil-Repellent Polymeric Coatings. ACS Applied Materials & Interfaces, 2019, 11, 47382-47389.                                    | 8.0  | 44        |
| 53 | Bio-Inspired Elastic Liquid-Infused Material for On-Demand Underwater Manipulation of Air Bubbles.<br>ACS Nano, 2019, 13, 10596-10602.                                                                                          | 14.6 | 37        |
| 54 | Controllable Fabrication of Noniridescent Microshaped Photonic Crystal Assemblies by Dynamic<br>Three-Phase Contact Line Behaviors on Superhydrophobic Substrates. ACS Applied Materials &<br>Interfaces, 2015, 7, 22644-22651. | 8.0  | 35        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release. Chemical Science, 2017, 8, 2010-2016.                                                     | 7.4  | 35        |
| 56 | Condensation frosting and passive anti-frosting. Cell Reports Physical Science, 2021, 2, 100474.                                                                                                       | 5.6  | 35        |
| 57 | Mucus-Inspired Supramolecular Adhesives with Oil-Regulated Molecular Configurations and<br>Long-Lasting Antibacterial Properties. ACS Applied Materials & Interfaces, 2020, 12, 16877-16886.           | 8.0  | 34        |
| 58 | Multiphaseâ€Assembly of Siloxane Oligomers with Improved Mechanical Strength and Waterâ€Enhanced<br>Healing. Angewandte Chemie, 2018, 130, 11412-11416.                                                | 2.0  | 33        |
| 59 | Stretchable Electrets: Nanoparticle–Elastomer Composites. Nano Letters, 2020, 20, 4580-4587.                                                                                                           | 9.1  | 31        |
| 60 | Running droplet of interfacial chemical reaction flow. Soft Matter, 2012, 8, 5988.                                                                                                                     | 2.7  | 29        |
| 61 | Cascadeâ€Microphaseâ€Separationâ€Induced Hierarchical Photonic Structures in Supramolecular<br>Organogel for Deformationâ€Insensitive Structural Colors. Advanced Optical Materials, 2019, 7, 1801749. | 7.3  | 27        |
| 62 | Inkjet Printed Physicallyâ€Unclonable Structuralâ€Color Anticounterfeiting Labels with Convenient<br>Artificial Intelligence Authentication. Advanced Materials Interfaces, 2021, 8, 2101281.          | 3.7  | 27        |
| 63 | Continuous Energy Harvesting from Ubiquitous Humidity Gradients using Liquidâ€Infused Nanofluidics.<br>Advanced Materials, 2022, 34, e2106410.                                                         | 21.0 | 27        |
| 64 | Lyophilic Nonwettable Surface Based on an Oil/Water/Air/Solid Fourâ€Phase System. Small, 2013, 9,<br>2515-2519.                                                                                        | 10.0 | 26        |
| 65 | Selfâ€Healable Organogel Nanocomposite with Angleâ€Independent Structural Colors. Angewandte<br>Chemie, 2017, 129, 10598-10602.                                                                        | 2.0  | 26        |
| 66 | Direct Insight into the Threeâ€Dimensional Internal Morphology of Solid–Liquid–Vapor Interfaces at<br>Microscale. Angewandte Chemie - International Edition, 2015, 54, 4792-4795.                      | 13.8 | 25        |
| 67 | A fluorescent molecular rotor probe for tracking plasma membranes and exosomes in living cells.<br>Chemical Communications, 2020, 56, 8480-8483.                                                       | 4.1  | 25        |
| 68 | Condensation-assisted micro-patterning of low-surface-tension liquids on reactive oil-repellent surfaces. Journal of Materials Chemistry A, 2017, 5, 16344-16351.                                      | 10.3 | 22        |
| 69 | Up-to-date vaccine delivery systems: robust immunity elicited by multifarious nanomaterials upon administration through diverse routes. Biomaterials Science, 2019, 7, 822-835.                        | 5.4  | 22        |
| 70 | Defect-enhanced selective ion transport in an ionic nanocomposite for efficient energy harvesting from moisture. Energy and Environmental Science, 2022, 15, 2601-2609.                                | 30.8 | 22        |
| 71 | Coordinationâ€Driven Assembly of Metal–Organic Framework Coating for Catalytically Active<br>Superhydrophobic Surface. Advanced Materials Interfaces, 2021, 8, 2001202.                                | 3.7  | 21        |
| 72 | Cationic Ligand Protection: A Novel Strategy for One-Pot Preparation of Narrow-Dispersed Aqueous<br>CdS Spheres. Langmuir, 2009, 25, 10237-10242.                                                      | 3.5  | 19        |

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | LncRNA CRNDE regulates the proliferation and migration of vascular smooth muscle cells. Journal of Cellular Physiology, 2019, 234, 16205-16214.                                                                                     | 4.1  | 19        |
| 74 | Bioinspired Supramolecular Slippery Organogels for Controlling Pathogen Spread by Respiratory<br>Droplets. Advanced Functional Materials, 2021, 31, 2102888.                                                                        | 14.9 | 19        |
| 75 | Ultrastretchable conductive liquid metal composites enabled by adaptive interfacial polarization.<br>Materials Horizons, 2021, 8, 3399-3408.                                                                                        | 12.2 | 17        |
| 76 | Particulate-Aggregated Adhesives with Exudate-Sensitive Properties and Sustained Bacteria<br>Disinfection to Facilitate Wound Healing. ACS Applied Materials & Interfaces, 2020, 12, 31090-31098.                                   | 8.0  | 16        |
| 77 | Liquid Metal Nanoparticles as a Highly Efficient Photoinitiator to Develop Multifunctional Hydrogel<br>Composites. ACS Applied Materials & Interfaces, 2022, 14, 29315-29323.                                                       | 8.0  | 16        |
| 78 | Bioinspired Robust Allâ€Aqueous Droplet via Diffusion ontrolled Interfacial Coacervation. Advanced<br>Functional Materials, 2020, 30, 2004166.                                                                                      | 14.9 | 15        |
| 79 | Direction-dependent adhesion of water strider's legs for water-walking. Solid State Sciences, 2012, 14, 1146-1151.                                                                                                                  | 3.2  | 14        |
| 80 | Manipulation of semiconductor nanocrystal growth in polymer soft solids. Soft Matter, 2009, 5, 4113.                                                                                                                                | 2.7  | 13        |
| 81 | Attenuating innate immunity and facilitating Î <sup>2</sup> -coronavirus infection by NSP1 of SARS-CoV-2 through specific redistributing hnRNP A2/B1 cellular localization. Signal Transduction and Targeted Therapy, 2021, 6, 371. | 17.1 | 13        |
| 82 | Aggregate Engineering in Supramolecular Polymers via Extensive Non-covalent Networks. Chinese<br>Journal of Polymer Science (English Edition), 2021, 39, 1310-1318.                                                                 | 3.8  | 12        |
| 83 | Capillary force restoration of droplet on superhydrophobic ribbed nano-needles arrays. Soft Matter, 2010, 6, 2470.                                                                                                                  | 2.7  | 9         |
| 84 | Topological prime. Science China Technological Sciences, 2020, 63, 1314-1322.                                                                                                                                                       | 4.0  | 9         |
| 85 | Mechano-Induced Assembly of a Nanocomposite for "Press-N-Go―Coatings with Highly Efficient<br>Surface Disinfection. ACS Applied Materials & Interfaces, 2021, 13, 19332-19341.                                                      | 8.0  | 6         |
| 86 | Hydrogels: Hydrogel Paint (Adv. Mater. 39/2019). Advanced Materials, 2019, 31, 1970276.                                                                                                                                             | 21.0 | 4         |
| 87 | Stable Liquid Jets Bouncing off Soft Gels. Physical Review Letters, 2018, 120, 028006.                                                                                                                                              | 7.8  | 3         |
| 88 | Magnetothermal Miniature Reactors Based on Fe <sub>3</sub> O <sub>4</sub> Nanocube oated Liquid<br>Marbles. Advanced Healthcare Materials, 2021, 10, e2001658.                                                                      | 7.6  | 3         |
| 89 | Bioinspired Fibers: Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection (Small 24/2011). Small, 2011, 7, 3428-3428.                                                                                      | 10.0 | 2         |
| 90 | A combined strategy of room-temperature plasma activation and chemical treatment to toughen the interfacial adhesion of fluoropolymers. Chemical Engineering Journal, 2022, 435, 135006.                                            | 12.7 | 2         |

| #  | Article                                                                                                                                                                                                 | IF               | CITATIONS                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|
| 91 | Organogels: Temperature-Driven Switching of Water Adhesion on Organogel Surface (Adv. Mater.) Tj ETQq1 1                                                                                                | 0.784314<br>21.0 | rgBT /Overlo <mark>ck</mark> |
| 92 | Liquid Marbles: Transparent and Gasâ€Permeable Liquid Marbles for Culturing and Drug Sensitivity Test<br>of Tumor Spheroids (Adv. Healthcare Mater. 13/2017). Advanced Healthcare Materials, 2017, 6, . | 7.6              | 0                            |
| 93 | Frontispiece: Emerging Applications of Bioinspired Slippery Surfaces in Biomedical Fields. Chemistry - A<br>European Journal, 2018, 24, .                                                               | 3.3              | Ο                            |