
Lino S Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1909757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial peptide-based materials: opportunities and challenges. Journal of Materials Chemistry B, 2022, 10, 2384-2429.	2.9	47
2	Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. Molecular Therapy - Nucleic Acids, 2022, 28, 307-327.	2.3	7
3	Multiâ€parametric surface plasmon resonanceâ€based intake quantification of labelâ€free lightâ€activated nanoparticles by therapeutic limbal stem cells for corneal blindness. Nano Select, 2022, 3, 1232-1241.	1.9	2
4	Antimicrobial Peptide-Tether Dressing Able to Enhance Wound Healing by Tissue Contact. ACS Applied Materials & Interfaces, 2022, 14, 24213-24228.	4.0	12
5	MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson's disease. Molecular Therapy, 2022, 30, 3176-3192.	3.7	27
6	Efficient spatially targeted gene editing using a near-infrared activatable protein-conjugated nanoparticle for brain applications. Nature Communications, 2022, 13, .	5.8	9
7	Revisiting gene delivery to the brain: silencing and editing. Biomaterials Science, 2021, 9, 1065-1087.	2.6	14
8	Induced pluripotent stem cell-derived vascular networks to screen nano–bio interactions. Nanoscale Horizons, 2021, 6, 245-259.	4.1	7
9	Human Extracellular-Matrix Functionalization of 3D hiPSC-Based Cardiac Tissues Improves Cardiomyocyte Maturation. ACS Applied Bio Materials, 2021, 4, 1888-1899.	2.3	17
10	Biomedical applications of the peptide decorated gold nanoparticles. Critical Reviews in Biotechnology, 2021, 41, 186-215.	5.1	21
11	Refinement of a differentiation protocol using neuroblastoma SH-SY5Y cells for use in neurotoxicology research. Food and Chemical Toxicology, 2021, 149, 111967.	1.8	21
12	Therapeutic Nanoparticles for the Different Phases of Ischemic Stroke. Life, 2021, 11, 482.	1.1	14
13	Exogenous loading of miRNAs into small extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12111.	5.5	43
14	High-throughput screening of nanoparticles in drug delivery. APL Bioengineering, 2021, 5, 031511.	3.3	11
15	Engineered extracellular vesicles as brain therapeutics. Journal of Controlled Release, 2021, 338, 472-485.	4.8	25
16	Interindividual heterogeneity affects the outcome of human cardiac tissue decellularization. Scientific Reports, 2021, 11, 20834.	1.6	16
17	Antimicrobial and pro-angiogenic properties of soluble and nanoparticle-immobilized LL37 peptides. Biomaterials Science, 2021, 9, 8153-8159.	2.6	16
18	A Lightâ€Triggerable Nanoparticle Library for the Controlled Release of Nonâ€Coding RNAs. Angewandte Chemie - International Edition, 2020, 59, 1985-1991.	7.2	24

#	Article	IF	CITATIONS
19	A Lightâ€Triggerable Nanoparticle Library for the Controlled Release of Nonâ€Coding RNAs. Angewandte Chemie, 2020, 132, 2001-2007.	1.6	3
20	Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry. Nature Protocols, 2020, 15, 2956-2979.	5.5	35
21	Permeability of the blood-brain barrier through the phases of ischaemic stroke and relation with clinical outcome: protocol for a systematic review. BMJ Open, 2020, 10, e039280.	0.8	4
22	Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nature Communications, 2020, 11, 4265.	5.8	65
23	Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13. Nature Communications, 2020, 11, 4110.	5.8	20
24	Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nature Reviews Cardiology, 2020, 17, 685-697.	6.1	228
25	Embryonic stem cells as a cell source for tissue engineering. , 2020, , 467-490.		8
26	A light-triggerable formulation to control the stability of pro-angiogenic transcription factor hypoxia inducible factor-11± (HIF-11±). Nanoscale, 2020, 12, 9935-9942.	2.8	7
27	A high-throughput screening platform to identify nanocarriers for efficient delivery of RNA-based therapies. Methods, 2020, 190, 13-25.	1.9	8
28	Bioprocess decision support tool for scalable manufacture of extracellular vesicles. Biotechnology and Bioengineering, 2019, 116, 307-319.	1.7	28
29	A Highâ€Throughput Screening Method to Identify Compounds Displaying Human Vascular Embryonic Toxicity. Current Protocols in Stem Cell Biology, 2019, 50, e93.	3.0	1
30	The Kinetics of Small Extracellular Vesicle Delivery Impacts Skin Tissue Regeneration. ACS Nano, 2019, 13, 8694-8707.	7.3	100
31	What human blood-brain barrier models can tell us about BBB function and drug discovery?. Expert Opinion on Drug Discovery, 2019, 14, 1113-1123.	2.5	9
32	Spatially Confining Surface Roughness on Exponentially Growing Polyelectrolyte Multilayer Films. Advanced Materials Interfaces, 2019, 6, 1900702.	1.9	5
33	A photodynamic antibacterial spray-coating based on the host–guest immobilization of the photosensitizer methylene blue. Journal of Materials Chemistry B, 2019, 7, 5089-5095.	2.9	33
34	A positron-emission tomography (PET)/magnetic resonance imaging (MRI) platform to track <i>in vivo</i> small extracellular vesicles. Nanoscale, 2019, 11, 13243-13248.	2.8	40
35	Derivation of Brain Capillary-like Endothelial Cells from Human Pluripotent Stem Cell-Derived Endothelial Progenitor Cells. Stem Cell Reports, 2019, 13, 599-611.	2.3	41
36	A near infrared light-triggerable modular formulation for the delivery of small biomolecules. Journal of Nanobiotechnology, 2019, 17, 97.	4.2	10

#	Article	IF	CITATIONS
37	Unveiling the molecular crosstalk in a human induced pluripotent stem cellâ€derived cardiac model. Biotechnology and Bioengineering, 2019, 116, 1245-1252.	1.7	27
38	Nanoparticle-Based Drug Delivery Systems: Promising Approaches Against Bacterial Infections. , 2019, , 605-633.		5
39	Intravenous administration of retinoic acid-loaded polymeric nanoparticles prevents ischemic injury in the immature brain. Neuroscience Letters, 2018, 673, 116-121.	1.0	16
40	Substrate Topography Modulates Cell Aging on a Progeria Cell Model. ACS Biomaterials Science and Engineering, 2018, 4, 1498-1504.	2.6	6
41	Nanoparticles Conjugated with Photocleavable Linkers for the Intracellular Delivery of Biomolecules. Bioconjugate Chemistry, 2018, 29, 1485-1489.	1.8	12
42	Endothelial Progenitor Cells influence acute and subacute stroke hemodynamics. Journal of the Neurological Sciences, 2018, 385, 119-125.	0.3	8
43	Stem cells as vehicles and targets of nanoparticles. Drug Discovery Today, 2018, 23, 1071-1078.	3.2	21
44	Light-triggerable formulations for the intracellular controlled release of biomolecules. Drug Discovery Today, 2018, 23, 1062-1070.	3.2	26
45	Challenging the great vascular wall: Can we envision a simple yet comprehensive therapy for stroke?. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e350-e354.	1.3	6
46	Endothelial progenitor cells enhance blood–brain barrier permeability in subacute stroke. Neurology, 2018, 90, e127-e134.	1.5	20
47	Physiological and Pathological Vascular Aging. Biological and Medical Physics Series, 2018, , 51-72.	0.3	Ο
48	Cooperative Transcription Factor Induction Mediates Hemogenic Reprogramming. Cell Reports, 2018, 25, 2821-2835.e7.	2.9	27
49	Cecropin–Melittin Functionalized Polyurethane Surfaces Prevent <i>Staphylococcus epidermidis</i> Adhesion without Inducing Platelet Adhesion and Activation. Advanced Materials Interfaces, 2018, 5, 1801390.	1.9	14
50	STROKE34 Study Protocol: A Randomized Controlled Phase IIa Trial of Intra-Arterial CD34+ Cells in Acute Ischemic Stroke. Frontiers in Neurology, 2018, 9, 302.	1.1	7
51	Atomistic-Level Investigation of a LL37-Conjugated Gold Nanoparticle By Well-Tempered Metadynamics. Journal of Physical Chemistry B, 2018, 122, 8359-8366.	1.2	12
52	Modulation of Angiogenic Activity by Light-Activatable miRNA-Loaded Nanocarriers. ACS Nano, 2018, 12, 5207-5220.	7.3	36
53	A nanoformulation for the preferential accumulation in adult neurogenic niches. Journal of Controlled Release, 2018, 284, 57-72.	4.8	30
54	MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo. PLoS ONE, 2018, 13, e0193609.	1.1	31

#	Article	IF	CITATIONS
55	Biomechanical Strain Exacerbates Inflammation on a Progeriaâ€onâ€aâ€Chip Model. Small, 2017, 13, 1603737.	5.2	75

$Organa \in Ona \in Aa \in Chip: Biomechanical Strain Exacerbates Inflammation on a Progeriaa \in Ona \in Aa \in Chip Model (Small), Ti ETQq0, 0 0 rgBT / One Strain Exacerbates Inflammation on a Progeriaa \in Ona \in Aa \in Chip Model (Small), Ti ETQq0, 0 0 rgBT / One Strain Exacerbates Inflammation on a Progeriaa \in Ona \in Aa \in Chip Model (Small), Ti ETQq0, 0 0 rgBT / One Strain Exacerbates Inflammation on a Progeriaa \in Ona \in Ona \in Aa \in Chip Model (Small), Ti ETQq0, 0 0 rgBT / One Strain Exacerbates Inflammation on a Progeriaa \in Ona \in One Strain Exacerbates Inflammation on a Progeriaa (Small), Ti ETQq0, 0 0 rgBT / One Strain Exacerbates Inflammation on a Progeriaa (Small), Ti ETQq0, 0 0 rgBT / One Strain Exacerbates Inflammation on a Progeriaa (Small), Ti ETQq0, 0 0 rgBT / One Strain Exacerbates Inflammation on a Progeriaa (Small), Ti ETQq0, 0 0 rgBT / One Strain Exacerbates Inflammation on a Progeriaa (Small), Ti ETQq0, 0 0 rgBT / One Strain Exacerbates (Small), Ti ETQq0, 0 0 rgBT / One S$

57	Restoring heart function and electrical integrity: closing the circuit. Npj Regenerative Medicine, 2017, 2, 9.	2.5	44
58	Prolonged intracellular accumulation of light-inducible nanoparticles in leukemia cells allows their remote activation. Nature Communications, 2017, 8, 15204.	5.8	20
59	Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovascular Research, 2017, 113, 1338-1350.	1.8	193
60	High-throughput identification of small molecules that affect human embryonic vascular development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3022-E3031.	3.3	35
61	Synthetic microparticles conjugated with VEGF165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition. Nature Communications, 2017, 8, 747.	5.8	35
62	Intracellular delivery of more than one protein with spatio-temporal control. Nanoscale, 2017, 9, 18668-18680.	2.8	10
63	Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential. Journal of Controlled Release, 2017, 262, 58-71.	4.8	48
64	Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles. Acta Biomaterialia, 2017, 59, 293-302.	4.1	24
65	Findings on the interaction of the antimicrobial peptide cecropin-melittin with a gold surface from molecular dynamics studies. European Biophysics Journal, 2017, 46, 247-256.	1.2	8
66	Anti-Inflammatory Strategy for M2 Microglial Polarization Using Retinoic Acid-Loaded Nanoparticles. Mediators of Inflammation, 2017, 2017, 1-11.	1.4	41
67	Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release, 2016, 235, 34-47.	4.8	1,018
68	High Antimicrobial Activity and Low Human Cell Cytotoxicity of Core–Shell Magnetic Nanoparticles Functionalized with an Antimicrobial Peptide. ACS Applied Materials & Interfaces, 2016, 8, 11366-11378.	4.0	56
69	Traceable microRNA-124 loaded nanoparticles as a new promising therapeutic tool for Parkinson's disease. Neurogenesis (Austin, Tex), 2016, 3, e1256855.	1.5	23
70	A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells. Scientific Reports, 2016, 6, 34798.	1.6	28
71	Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development. Applied in Vitro Toxicology, 2016, 2, 82-96.	0.6	124
72	High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells. Acta Biomaterialia, 2016, 33, 64-77.	4.1	93

#	Article	IF	CITATIONS
73	Nanomedicine Approaches to Modulate Neural Stem Cells in Brain Repair. Trends in Biotechnology, 2016, 34, 437-439.	4.9	28
74	Stem Cell-Based Human Blood–Brain Barrier Models for Drug Discovery and Delivery. Trends in Biotechnology, 2016, 34, 382-393.	4.9	137
75	One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials, 2016, 85, 99-110.	5.7	127
76	Vascular disease modeling using induced pluripotent stem cells: Focus in Hutchinson-Gilford Progeria Syndrome. Biochemical and Biophysical Research Communications, 2016, 473, 710-718.	1.0	6
77	Lysophosphatidic acid enhances survival of human CD34+ cells in ischemic conditions. Scientific Reports, 2015, 5, 16406.	1.6	22
78	Retinoic acid-loaded polymeric nanoparticles induce neuroprotection in a mouse model for Parkinson's disease. Frontiers in Aging Neuroscience, 2015, 7, 20.	1.7	67
79	A Stable and Reproducible Human Blood-Brain Barrier Model Derived from Hematopoietic Stem Cells. PLoS ONE, 2014, 9, e99733.	1.1	249
80	Combined Surface Micropatterning and Reactive Chemistry Maximizes Tissue Adhesion with Minimal Inflammation. Advanced Healthcare Materials, 2014, 3, 565-571.	3.9	16
81	Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	17
82	Interaction of Fullerene Nanoparticles With Biomembranes: From the Partition in Lipid Membranes to Effects on Mitochondrial Bioenergetics. Toxicological Sciences, 2014, 138, 117-129.	1.4	53
83	A Blood-Resistant Surgical Clue for Minimally Invasive Repair of Vessels and Heart Defects. Science Translational Medicine, 2014, 6, 218ra6.	5.8	253
84	Inflammatory modulation of stem cells by Magnetic Resonance Imaging (MRI)-detectable nanoparticles. RSC Advances, 2014, 4, 31706-31709.	1.7	9
85	PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. Journal of Controlled Release, 2014, 194, 138-147.	4.8	193
86	Embryonic Stem Cells as a Cell Source for Tissue Engineering. , 2014, , 609-638.		5
87	A Highly Tunable Biocompatible and Multifunctional Biodegradable Elastomer. Advanced Materials, 2013, 25, 1209-1215.	11.1	94
88	Antifungal activity of dental resins containing amphotericin B-conjugated nanoparticles. Dental Materials, 2013, 29, e252-e262.	1.6	18
89	Efficient Pro-survival/angiogenic miRNA Delivery by an MRI-Detectable Nanomaterial. ACS Nano, 2013, 7, 3362-3372.	7.3	38

90 Overview of Tissue Engineering Concepts and Applications. , 2013, , 1122-1137.

3

#	Article	IF	CITATIONS
91	Differential internalization of amphotericin B $\hat{a} \in$ Conjugated nanoparticles in human cells and the expression of heat shock proteinÅ70. Biomaterials, 2013, 34, 5281-5293.	5.7	14
92	Boron Nitride Nanotube-Mediated Stimulation of Cell Co-Culture on Micro-Engineered Hydrogels. PLoS ONE, 2013, 8, e71707.	1.1	66
93	Polymeric Nanoparticles to Control the Differentiation of Neural Stem Cells in the Subventricular Zone of the Brain. ACS Nano, 2012, 6, 10463-10474.	7.3	85
94	Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomedical Materials (Bristol), 2012, 7, 035010.	1.7	84
95	Histamine modulates microglia function. Journal of Neuroinflammation, 2012, 9, 90.	3.1	95
96	Nanoparticles and Surfaces Presenting Antifungal, Antibacterial and Antiviral Properties. Langmuir, 2012, 28, 7646-7656.	1.6	129
97	Nanomedicine boosts neurogenesis: new strategies for brain repair. Integrative Biology (United) Tj ETQq1 1 0.784	314 rgBT 0.6	/Qyerlock 1
98	VEGF-Functionalized Dextran Has Longer Intracellular Bioactivity than VEGF in Endothelial Cells. Biomacromolecules, 2012, 13, 2906-2916.	2.6	7
99	Histamine Stimulates Neurogenesis in the Rodent Subventricular Zone. Stem Cells, 2012, 30, 773-784.	1.4	46
100	Gecko-Inspired Tape-Based Adhesives. , 2012, , 195-223.		0
101	Vascular Differentiation of Human Pluripotent Stem Cells. , 2012, , 97-115.		0
102	Controlling the Neuronal Differentiation of Stem Cells by the Intracellular Delivery of Retinoic Acid-Loaded Nanoparticles. ACS Nano, 2011, 5, 97-106.	7.3	87
103	Three-dimensional biomaterials for the study of human pluripotent stem cells. Nature Methods, 2011, 8, 731-736.	9.0	205
104	Methods for Embryoid Body Formation: The Microwell Approach. Methods in Molecular Biology, 2011, 690, 151-162.	0.4	24
105	Improved Survival, Vascular Differentiation and Wound Healing Potential of Stem Cells Co-Cultured with Endothelial Cells. PLoS ONE, 2011, 6, e16114.	1.1	88
106	Towards the Maturation and Characterization of Smooth Muscle Cells Derived from Human Embryonic Stem Cells. PLoS ONE, 2011, 6, e17771.	1.1	32
107	Nanoparticles for intracellular-targeted drug delivery. Nanotechnology, 2011, 22, 494002.	1.3	83
108	Sensing the Cardiac Environment: Exploiting Cues for Regeneration. Journal of Cardiovascular Translational Research, 2011, 4, 616-630.	1.1	12

#	Article	IF	CITATIONS
109	Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials, 2011, 32, 1102-1109.	5.7	139
110	Scaffolding for Three-Dimensional Embryonic Vasculogenesis. Biological and Medical Physics Series, 2011, , 49-67.	0.3	1
111	Isolation, differentiation and characterization of vascular cells derived from human embryonic stem cells. Nature Protocols, 2010, 5, 1115-1126.	5.5	84
112	Antifungal Nanoparticles and Surfaces. Biomacromolecules, 2010, 11, 2810-2817.	2.6	75
113	Nanoparticles as tools to study and control stem cells. Journal of Cellular Biochemistry, 2009, 108, 746-752.	1.2	62
114	Cell-responsive hydrogel for encapsulation of vascular cells. Biomaterials, 2009, 30, 4318-4324.	5.7	125
115	Non-leaching surfaces capable of killing microorganisms on contact. Journal of Materials Chemistry, 2009, 19, 7796.	6.7	153
116	Vascular Differentiation of Human Embryonic Stem Cells in Bioactive Hydrogel-Based Scaffolds. Methods in Molecular Biology, 2009, 584, 333-354.	0.4	7
117	Human Embryoid Bodies Containing Nano―and Microparticulate Delivery Vehicles. Advanced Materials, 2008, 20, 2285-2291.	11.1	68
118	Intracellular delivery of core–shell fluorescent silica nanoparticles. Biomaterials, 2008, 29, 1526-1532.	5.7	178
119	New Opportunities: The Use of Nanotechnologies to Manipulate and Track Stem Cells. Cell Stem Cell, 2008, 3, 136-146.	5.2	265
120	A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2307-2312.	3.3	490
121	Vascular Progenitor Cells Isolated From Human Embryonic Stem Cells Give Rise to Endothelial and Smooth Muscle–Like Cells and Form Vascular Networks In Vivo. Circulation Research, 2007, 101, 286-294.	2.0	219
122	Antifungal hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12994-12998.	3.3	101
123	Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol- <i>co</i> -sebacate). Biomacromolecules, 2007, 8, 3067-3073.	2.6	266
124	Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11298-11303.	3.3	615
125	Embryonic Stem Cells as a Cell Source for Tissue Engineering. , 2007, , 445-458.		Ο
126	Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 2007, 28, 2706-2717.	5.7	262

#	Article	IF	CITATIONS
127	Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials, 2006, 27, 5968-5977.	5.7	198
128	Cultivation of Human Embryonic Stem Cells Without the Embryoid Body Step Enhances Osteogenesis In Vitro. Stem Cells, 2006, 24, 835-843.	1.4	163
129	Synthesis and characterization of new injectable and degradable dextran-based hydrogels. Polymer, 2005, 46, 9604-9614.	1.8	209
130	Improving the adhesion of poly(ethylene terephthalate) fibers to poly(hydroxyethyl methacrylate) hydrogels by ozone treatment: Surface characterization and pull-out tests. Polymer, 2005, 46, 9840-9850.	1.8	30
131	Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels. Biomaterials, 2005, 26, 4707-4716.	5.7	65
132	Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels. Journal of Biomedical Materials Research Part B, 2004, 68A, 584-596.	3.0	52
133	Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg). Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 189-199.	1.8	68
134	Biocatalytic Polytransesterification of Inulin with Divinyladipate. Chemistry of Materials, 2002, 14, 4009-4011.	3.2	10
135	Enzymatic Synthesis of Inulin-Containing Hydrogels. Biomacromolecules, 2002, 3, 333-341.	2.6	25
136	Enzymatic synthesis of dextran-containing hydrogels. Biomaterials, 2002, 23, 3957-3967.	5.7	72
137	Exquisite Regioselectivity and Increased Transesterification Activity of an Immobilized Bacillus subtilis Protease. Biotechnology Progress, 2002, 18, 986-993.	1.3	16
138	Design of a Drug-Delivery System Based On Polyacrylamide Hydrogels. Evaluation of Structural Properties. The Chemical Educator, 2001, 6, 100-103.	0.0	28
139	Evaluation of poly(2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. International Journal of Pharmaceutics, 2000, 194, 169-180.	2.6	147
140	Preparation and characterisation of gels based on sucrose modified with glycidyl methacrylate. Carbohydrate Polymers, 2000, 41, 15-24.	5.1	55
141	Part C: Directed Differentiation of Human Embryonic Stem Cells into Osteoblasts Cells. , 0, , 249-271.		Ο