Ryther Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1909336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of spontaneous de-interpenetration through charged point-point repulsions. CheM, 2022, 8, 225-242.	11.7	11
2	Stacking of Monolayer Graphene Particles at a Water–Vapor Interface. Journal of Physical Chemistry C, 2021, 125, 7880-7888.	3.1	7
3	Deep learning combined with IAST to screen thermodynamically feasible MOFs for adsorption-based separation of multiple binary mixtures. Journal of Chemical Physics, 2021, 154, 234102.	3.0	17
4	Exploiting hydrophobicity and hydrophilicity in nanopores as a design principle for "smart―MOF microtanks for methane storage. Molecular Systems Design and Engineering, 2020, 5, 166-176.	3.4	4
5	Adsorption Isotherm Predictions for Multiple Molecules in MOFs Using the Same Deep Learning Model. Journal of Chemical Theory and Computation, 2020, 16, 1271-1283.	5.3	76
6	Electronic effects due to organic linker-metal surface interactions: implications on screening of MOF-encapsulated catalysts. Physical Chemistry Chemical Physics, 2020, 22, 2475-2487.	2.8	10
7	Vacancy Healing as a Desorption Tool: Oxygen Triggered Removal of Stored Ammonia from NiO _{1–<i>x</i>} /MOR Validated by Experiments and Simulations. ACS Applied Energy Materials, 2020, 3, 8233-8239.	5.1	6
8	Large-Scale Free Energy Calculations on a Computational Metal–Organic Frameworks Database: Toward Synthetic Likelihood Predictions. Chemistry of Materials, 2020, 32, 8106-8119.	6.7	24
9	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	12.6	429
10	Improving Energy Transfer within Metal–Organic Frameworks by Aligning Linker Transition Dipoles along the Framework Axis. Journal of the American Chemical Society, 2020, 142, 11192-11202.	13.7	48
11	Material Consequences of Hydrogen Dissolution in Palladium Alloys Observed from First Principles. Journal of Physical Chemistry C, 2019, 123, 22158-22171.	3.1	8
12	Modular Synthesis of Highly Porous Zr-MOFs Assembled from Simple Building Blocks for Oxygen Storage. ACS Applied Materials & Interfaces, 2019, 11, 42179-42185.	8.0	17
13	Increasing topological diversity during computational "synthesis―of porous crystals: how and why. CrystEngComm, 2019, 21, 1653-1665.	2.6	69
14	Dissociation, Dissolution, and Diffusion of Nitrogen on V _{<i>x</i>} Fe _{<i>y</i>} and V _{<i>x</i>} Cr _{<i>y</i>} Alloy Membranes Studied by First Principles. Journal of Physical Chemistry C, 2019, 123, 30416-30426.	3.1	1
15	Attainable Volumetric Targets for Adsorption-Based Hydrogen Storage in Porous Crystals: Molecular Simulation and Machine Learning. Journal of Physical Chemistry C, 2019, 123, 120-130.	3.1	57
16	Time Dependent Structural Evolution of Porous Organic Cage CC3. Crystal Growth and Design, 2018, 18, 921-927.	3.0	19
17	Molecular Simulation Insights on Xe/Kr Separation in a Set of Nanoporous Crystalline Membranes. ACS Applied Materials & Interfaces, 2018, 10, 582-592.	8.0	44
18	Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems. CheM, 2018, 4, 1022-1034.	11.7	281

#	Article	IF	CITATIONS
19	Role of Pore Chemistry and Topology in the CO ₂ Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning. Chemistry of Materials, 2018, 30, 6325-6337.	6.7	144