Gary W Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1908890/publications.pdf

Version: 2024-02-01

		28242	31818
171	11,446	55	101
papers	citations	h-index	g-index
183	183	183	11735
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The exposome and health: Where chemistry meets biology. Science, 2020, 367, 392-396.	6.0	499
2	Cocaine self-administration in dopamine-transporter knockout mice. Nature Neuroscience, 1998, 1, 132-137.	7.1	463
3	Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nature Neuroscience, 2000, 3, 465-471.	7.1	435
4	The Nature of Nurture: Refining the Definition of the Exposome. Toxicological Sciences, 2014, 137, 1-2.	1.4	350
5	Reduced Vesicular Storage of Dopamine Causes Progressive Nigrostriatal Neurodegeneration. Journal of Neuroscience, 2007, 27, 8138-8148.	1.7	346
6	Knockout of the Vesicular Monoamine Transporter 2 Gene Results in Neonatal Death and Supersensitivity to Cocaine and Amphetamine. Neuron, 1997, 19, 1285-1296.	3.8	345
7	Forced Limb-Use Effects on the Behavioral and Neurochemical Effects of 6-Hydroxydopamine. Journal of Neuroscience, 2001, 21, 4427-4435.	1.7	331
8	Dopamine transporters and neuronal injury. Trends in Pharmacological Sciences, 1999, 20, 424-429.	4.0	313
9	Immunocytochemical localization of the dopamine transporter in human brain., 1999, 409, 38-56.		282
10	Parkinson's disease and pesticides: a toxicological perspective. Trends in Pharmacological Sciences, 2008, 29, 322-329.	4.0	275
11	Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease. Journal of Neurochemistry, 2007, 100, 070214184024016-???.	2.1	265
12	Nonmotor Symptoms of Parkinson's Disease Revealed in an Animal Model with Reduced Monoamine Storage Capacity. Journal of Neuroscience, 2009, 29, 8103-8113.	1.7	241
13	Increased Methamphetamine Neurotoxicity in Heterozygous Vesicular Monoamine Transporter 2 Knock-Out Mice. Journal of Neuroscience, 1999, 19, 2424-2431.	1.7	229
14	Paraquat Neurotoxicity is Distinct from that of MPTP and Rotenone. Toxicological Sciences, 2005, 88, 193-201.	1.4	215
15	Immunochemical analysis of dopamine transporter protein in Parkinson's disease. Annals of Neurology, 1997, 41, 530-539.	2.8	190
16	Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease. FASEB Journal, 2006, 20, 1695-1697.	0.2	188
17	Reference Standardization for Mass Spectrometry and High-resolution Metabolomics Applications to Exposome Research. Toxicological Sciences, 2015, 148, 531-543.	1.4	186
18	Immunochemical Analysis of Vesicular Monoamine Transporter (VMAT2) Protein in Parkinson's Disease. Experimental Neurology, 1999, 156, 138-148.	2.0	174

#	Article	IF	CITATIONS
19	Protective Actions of the Vesicular Monoamine Transporter 2 (VMAT2) in Monoaminergic Neurons. Molecular Neurobiology, 2009, 39, 149-170.	1.9	171
20	Determinants of buildup of the toxic dopamine metabolite <scp>DOPAL</scp> in Parkinson's disease. Journal of Neurochemistry, 2013, 126, 591-603.	2.1	169
21	Detection of Behavioral Impairments Correlated to Neurochemical Deficits in Mice Treated with Moderate Doses of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Experimental Neurology, 2002, 178, 80-90.	2.0	164
22	The effects of environmental neurotoxicants on the dopaminergic system: A possible role in drug addiction. Biochemical Pharmacology, 2008, 76, 569-581.	2.0	162
23	Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9977-9982.	3. 3	160
24	Sampling interstitial fluid from human skin using a microneedle patch. Science Translational Medicine, 2020, 12, .	5.8	150
25	Increased MPTP Neurotoxicity in Vesicular Monoamine Transporter 2 Heterozygote Knockout Mice. Journal of Neurochemistry, 1998, 70, 1973-1978.	2.1	148
26	Behavioral phenotyping of mouse models of Parkinson's disease. Behavioural Brain Research, 2010, 211, 1-10.	1.2	147
27	From the exposome to mechanistic understanding of chemical-induced adverse effects. Environment International, 2017, 99, 97-106.	4.8	146
28	The Exposome: Molecules to Populations. Annual Review of Pharmacology and Toxicology, 2019, 59, 107-127.	4.2	144
29	Forced Nonuse in Unilateral Parkinsonian Rats Exacerbates Injury. Journal of Neuroscience, 2002, 22, 6790-6799.	1.7	136
30	Industrial toxicants and Parkinson's disease. NeuroToxicology, 2012, 33, 178-188.	1.4	121
31	Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Experimental Neurology, 2007, 204, 619-630.	2.0	120
32	Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and I-DOPA reversible motor deficits. Neurobiology of Disease, 2015, 74, 66-75.	2.1	119
33	Divergent Mechanisms of Paraquat, MPP+, and Rotenone Toxicity: Oxidation of Thioredoxin and Caspase-3 Activation. Toxicological Sciences, 2007, 95, 163-171.	1.4	118
34	Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor. Behavioural Brain Research, 2006, 172, 97-105.	1.2	113
35	Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: An untargeted metabolomics approach. Environment International, 2020, 134, 105220.	4.8	110
36	Obligatory Role for Complex I Inhibition in the Dopaminergic Neurotoxicity of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicological Sciences, 2007, 95, 196-204.	1.4	109

#	Article	IF	CITATIONS
37	Developmental pesticide exposure reproduces features of attention deficit hyperactivity disorder. FASEB Journal, 2015, 29, 1960-1972.	0.2	105
38	Altered vesicular dopamine storage in Parkinson's disease: a premature demise. Trends in Neurosciences, 2008, 31, 303-308.	4.2	101
39	Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2253-E2262.	3.3	101
40	Pyrethroid pesticide-induced alterations in dopamine transporter function. Toxicology and Applied Pharmacology, 2006, 211, 188-197.	1.3	99
41	Metformin rescues Parkinson's disease phenotypes caused by hyperactive mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26438-26447.	3.3	95
42	Polychlorinated Biphenyl–Induced Reduction of Dopamine Transporter Expression as a Precursor to Parkinson's Disease–Associated Dopamine Toxicity. Toxicological Sciences, 2006, 92, 490-499.	1.4	94
43	Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson's disease. Neurobiology of Disease, 2014, 67, 191-202.	2.1	94
44	Acute exposure to aroclor 1016 or 1260 differentially affects dopamine transporter and vesicular monoamine transporter 2 levels. Toxicology Letters, 2004, 148, 29-40.	0.4	89
45	Reduced vesicular storage of dopamine exacerbates methamphetamineâ€induced neurodegeneration and astrogliosis. Journal of Neurochemistry, 2008, 106, 2205-2217.	2.1	86
46	Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. European Journal of Neuroscience, 2017, 45, 20-33.	1.2	85
47	Reduced MPTP toxicity in noradrenaline transporter knockout mice. Journal of Neurochemistry, 2004, 91, 1116-1124.	2.1	76
48	VMAT2-Deficient Mice Display Nigral and Extranigral Pathology and Motor and Nonmotor Symptoms of Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-9.	0.6	75
49	Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19561-19566.	3.3	75
50	The Importance of the Biological Impact of Exposure to the Concept of the Exposome. Environmental Health Perspectives, 2016, 124, 1504-1510.	2.8	72
51	Human Suction Blister Fluid Composition Determined Using High-Resolution Metabolomics. Analytical Chemistry, 2018, 90, 3786-3792.	3.2	72
52	Research on the Premotor Symptoms of Parkinson's Disease: Clinical and Etiological Implications. Environmental Health Perspectives, 2013, 121, 1245-1252.	2.8	68
53	PACAP38 increases vesicular monoamine transporter 2 (VMAT2) expression and attenuates methamphetamine toxicity. Neuropeptides, 2008, 42, 423-434.	0.9	64
54	Association between polychlorinated biphenyls and Parkinson's disease neuropathology. NeuroToxicology, 2012, 33, 1298-1304.	1.4	64

#	Article	IF	CITATIONS
55	Computational Systems Analysis of Dopamine Metabolism. PLoS ONE, 2008, 3, e2444.	1.1	62
56	Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length. Water Research, 2012, 46, 4521-4531.	5.3	59
57	Reduced vesicular storage of catecholamines causes progressive degeneration in the locus ceruleus. Neuropharmacology, 2014, 76, 97-105.	2.0	58
58	The Metabolome: a Key Measure for Exposome Research in Epidemiology. Current Epidemiology Reports, 2019, 6, 93-103.	1.1	57
59	Increased Vesicular Monoamine Transporter 2 (VMAT2; $\langle i \rangle$ Slc18a2 $\langle i \rangle$) Protects against Methamphetamine Toxicity. ACS Chemical Neuroscience, 2015, 6, 790-799.	1.7	56
60	Perinatal Heptachlor Exposure Increases Expression of Presynaptic Dopaminergic Markers in Mouse Striatum. NeuroToxicology, 2005, 26, 721-728.	1.4	53
61	Exposure to the polybrominated diphenyl ether mixture DE-71 damages the nigrostriatal dopamine system: Role of dopamine handling in neurotoxicity. Experimental Neurology, 2013, 241, 138-147.	2.0	53
62	The Synaptic Vesicle Glycoprotein 2: Structure, Function, and Disease Relevance. ACS Chemical Neuroscience, 2019, 10, 3927-3938.	1.7	53
63	The vesicular monoamine transporter 2: An underexplored pharmacological target. Neurochemistry International, 2014, 73, 89-97.	1.9	52
64	Developmental heptachlor exposure increases susceptibility of dopamine neurons to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)in a gender-specific manner. NeuroToxicology, 2008, 29, 855-863.	1.4	49
65	Decreased Ethanol Preference and Consumption in Dopamine Transporter Female Knock-Out Mice. Alcoholism: Clinical and Experimental Research, 2002, 26, 758-764.	1.4	46
66	The exposome – a new approach for risk assessment. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 3-23.	0.9	45
67	Preventing Parkinson's Disease: An Environmental Agenda. Journal of Parkinson's Disease, 2022, 12, 45-68.	1.5	45
68	Treadmill Gait Analysis Does Not Detect Motor Deficits in Animal Models of Parkinson's Disease or Amyotrophic Lateral Sclerosis. Journal of Motor Behavior, 2008, 40, 568-577.	0.5	44
69	Rotenone and paraquat perturb dopamine metabolism: A computational analysis of pesticide toxicity. Toxicology, 2014, 315, 92-101.	2.0	44
70	Disruption of dopamine transport by DDT and its metabolites. NeuroToxicology, 2008, 29, 682-690.	1.4	42
71	Improving Reproducibility in Toxicology. Toxicological Sciences, 2014, 139, 1-3.	1.4	42
72	Selective expression of Parkinson's disease-related <i>Leucine-rich repeat kinase 2 </i> G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression. Human Molecular Genetics, 2015, 24, 5299-5312.	1.4	42

#	Article	IF	Citations
73	Highâ€resolution metabolomic profiling of Alzheimer's disease in plasma. Annals of Clinical and Translational Neurology, 2020, 7, 36-45.	1.7	42
74	VMAT2 and Parkinson's disease: harnessing the dopamine vesicle. Expert Review of Neurotherapeutics, 2014, 14, 1115-1117.	1.4	40
75	Towards a comprehensive characterisation of the human internal chemical exposome: Challenges and perspectives. Environment International, 2021, 156, 106630.	4.8	39
76	Vesicular Monoamine Transporter 2 (VMAT2) Level Regulates MPTP Vulnerability and Clearance of Excess Dopamine in Mouse Striatal Terminals. Toxicological Sciences, 2016, 153, 79-88.	1.4	38
77	Vesicular Integrity in Parkinson's Disease. Current Neurology and Neuroscience Reports, 2013, 13, 362.	2.0	36
78	Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model. Systems Biology in Reproductive Medicine, 2018, 64, 225-239.	1.0	35
79	A scalable workflow to characterize the human exposome. Nature Communications, 2021, 12, 5575.	5.8	31
80	Selective Enhancement of Dopamine Release in the Ventral Pallidum of Methamphetamine-Sensitized Mice. ACS Chemical Neuroscience, 2016, 7, 1364-1373.	1.7	30
81	Acute Mitochondrial and Chronic Toxicological Effects of 1-Methyl-4-Phenylpyridinium in Human Neuroblastoma Cells. NeuroToxicology, 2002, 23, 569-580.	1.4	28
82	In Vitro and In Vivo Characterization of the Alkaloid Nuciferine. PLoS ONE, 2016, 11, e0150602.	1.1	28
83	Immunochemical localization of vesicular monoamine transporter 2 (VMAT2) in mouse brain. Journal of Chemical Neuroanatomy, 2017, 83-84, 82-90.	1.0	28
84	A vesicular sequestration to oxidative deamination shift in myocardial sympathetic nerves in Parkinson's disease. Journal of Neurochemistry, 2014, 131, 219-228.	2.1	27
85	The Exposome Paradigm in Human Health: Lessons from the Emory Exposome Summer Course. Environmental Health Perspectives, 2017, 125, 064502.	2.8	25
86	Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals. Synapse, 2009, 63, 1133-1142.	0.6	24
87	The internal state of medium spiny neurons varies in response to different input signals. BMC Systems Biology, 2010, 4, 26.	3.0	24
88	Ubiquitous Flame-Retardant Toxicants Impair Spermatogenesis in a Human Stem Cell Model. IScience, 2018, 3, 161-176.	1.9	24
89	Selective D2 and D3 receptor antagonists oppositely modulate cocaine responses in mice via distinct postsynaptic mechanisms in nucleus accumbens. Neuropsychopharmacology, 2019, 44, 1445-1455.	2.8	24
90	Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo. Journal of Neurochemistry, 2021, 158, 960-979.	2.1	22

#	Article	IF	Citations
91	A fluorescent-based assay for live cell, spatially resolved assessment of vesicular monoamine transporter 2-mediated neurotransmitter transport. Journal of Neuroscience Methods, 2012, 209, 357-366.	1.3	21
92	ApoE4 inhibition of VMAT2 in the locus coeruleus exacerbates Tau pathology in Alzheimer's disease. Acta Neuropathologica, 2021, 142, 139-158.	3.9	21
93	I-DOPA Does Not Cause Neurotoxicity in VMAT2 Heterozygote Knockout Mice. NeuroToxicology, 2002, 23, 611-619.	1.4	20
94	More than Manuscripts: Reproducibility, Rigor, and Research Productivity in the Big Data Era. Toxicological Sciences, 2016, 149, 275-276.	1.4	20
95	Utilizing a Biology-Driven Approach to Map the Exposome in Health and Disease: An Essential Investment to Drive the Next Generation of Environmental Discovery. Environmental Health Perspectives, 2021, 129, 85001.	2.8	20
96	The Exposome and Toxicology: A Win–Win Collaboration. Toxicological Sciences, 2022, 186, 1-11.	1.4	20
97	Differences in plasma metabolites related to Alzheimer's disease, <i>APOE</i> ε4 status, and ethnicity. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12025.	1.8	19
98	The Exposome. , 2014, , 1-12.		19
99	NMDA receptor blockade ameliorates abnormalities of spike firing of subthalamic nucleus neurons in a parkinsonian nonhuman primate. Journal of Neuroscience Research, 2018, 96, 1324-1335.	1.3	18
100	Studying the Exposome to Understand the Environmental Determinants of Complex Liver Diseases. Hepatology, 2020, 71, 352-362.	3.6	18
101	Large scale enzyme based xenobiotic identification for exposomics. Nature Communications, 2021, 12, 5418.	5.8	18
102	The metabolome: A key measure for exposome research in epidemiology. Current Epidemiology Reports, 2019, 6, 93-103.	1.1	18
103	The Interplay of Environmental Exposures and Mental Health: Setting an Agenda. Environmental Health Perspectives, 2022, 130, 25001.	2.8	18
104	Merging the exposome into an integrated framework for "omics―sciences. IScience, 2022, 25, 103976.	1.9	18
105	Science, Societies, and Society. Toxicological Sciences, 2017, 156, 2-3.	1.4	17
106	Multigenerational metabolic profiling in the Michigan PBB registry. Environmental Research, 2019, 172, 182-193.	3.7	17
107	Immunochemical analysis of the expression of SV2C in mouse, macaque and human brain. Brain Research, 2019, 1702, 85-95.	1.1	17
108	RING finger protein 11 (RNF11) modulates susceptibility to 6-OHDA-induced nigral degeneration and behavioral deficits through NF-l ^o B signaling in dopaminergic cells. Neurobiology of Disease, 2013, 54, 264-279.	2.1	16

#	Article	IF	Citations
109	Reduced vesicular monoamine transport disrupts serotonin signaling but does not cause serotonergic degeneration. Experimental Neurology, 2016, 275, 17-24.	2.0	16
110	Cardiac Toxicity From Ethanol Exposure in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Toxicological Sciences, 2019, 169, 280-292.	1.4	16
111	Integrating Environment and Aging Research: Opportunities for Synergy and Acceleration. Frontiers in Aging Neuroscience, 2022, 14, 824921.	1.7	14
112	Use-dependent behavioral and neurochemical asymmetry in MPTP mice. Neuroscience Letters, 2007, 418, 213-216.	1.0	13
113	25-Hydroxyvitamin D Depletion Does Not Exacerbate MPTP-Induced Dopamine Neuron Damage in Mice. PLoS ONE, 2012, 7, e39227.	1.1	13
114	Data Sharing in Toxicology: Beyond Show and Tell. Toxicological Sciences, 2015, 143, 3-5.	1.4	13
115	Networks at the nexus of systems biology and the exposome. Current Opinion in Toxicology, 2019, 16, 25-31.	2.6	13
116	Parkinson's disease and the environment: Beyond pesticides. NeuroToxicology, 2012, 33, 585.	1.4	12
117	Green Chemistry as a Leadership Opportunity for Toxicology: We Must Take the Wheel. Toxicological Sciences, 2014, 141, 4-5.	1.4	12
118	Systematic Reviews in Toxicology. Toxicological Sciences, 2018, 163, 335-337.	1.4	12
119	Assessing Vesicular Monoamine Transport and Toxicity Using Fluorescent False Neurotransmitters. Chemical Research in Toxicology, 2021, 34, 1256-1264.	1.7	12
120	An exposomic framework to uncover environmental drivers of aging. Exposome, 2022, 2, osac002.	1.2	12
121	Making Data Accessible: The Dryad Experience. Toxicological Sciences, 2016, 149, 2-3.	1.4	11
122	The Emergence and Future of Public Health Data Science. Public Health Reviews, 2021, 42, 1604023.	1.3	11
123	Highâ€Resolution Exposomics and Metabolomics Reveals Specific Associations in Cholestatic Liver Diseases. Hepatology Communications, 2022, 6, 965-979.	2.0	11
124	Vesicular monoamine transporter 2 mediates fear behavior in mice. Genes, Brain and Behavior, 2020, 19, e12634.	1.1	10
125	Unsupervised dimensionality reduction for exposome research. Current Opinion in Environmental Science and Health, 2020, 15, 32-38.	2.1	10
126	Dopamine Transporter and Vesicular Monoamine Transporter Knockout Mice: Implications for Parkinson's Disease., 2001, 62, 179-190.		9

#	Article	IF	CITATIONS
127	Exposome: a new field, a new journal. Exposome, 2021, 1, .	1.2	9
128	[27] Generation of transporter-specific antibodies. Methods in Enzymology, 1998, 296, 407-422.	0.4	8
129	Using the exposome to address gene–environment interactions in kidney disease. Nature Reviews Nephrology, 2020, 16, 621-622.	4.1	7
130	Analytical strategies for chemical exposomics: exploring limits and feasibility. Exposome, 0, , .	1.2	7
131	Restoration of Noradrenergic Function in Parkinson's Disease Model Mice. ASN Neuro, 2021, 13, 175909142110097.	1.5	7
132	Using the exposome to understand environmental contributors to psychiatric disorders. Neuropsychopharmacology, 2021, 46, 263-264.	2.8	6
133	Genetic or Toxicant-Induced Disruption of Vesicular Monoamine Storage and Global Metabolic Profiling in <i>Caenorhabditis elegans</i> Ioxicological Sciences, 2021, 180, 313-324.	1.4	6
134	Integrating the exposome into a multi-omic research framework. Exposome, 2021, 1 , .	1.2	6
135	Cross-species metabolomic analysis of tau- and DDT-related toxicity. , 2022, 1, .		5
136	Contemporary Reviews in Toxicology. Toxicological Sciences, 2014, 142, 4-5.	1.4	4
137	<i>Toxicological Sciences</i> : Measuring the True Impact of the Journal. Toxicological Sciences, 2015, 147, 2-4.	1.4	4
138	Ch-Ch-Changes. Toxicological Sciences, 2014, 140, 1-2.	1.4	2
139	The Literature of Science. Toxicological Sciences, 2016, 153, 2-3.	1.4	2
140	The International Reach of Toxicology. Toxicological Sciences, 2017, 157, 274-275.	1.4	2
141	Preprints in Toxicology. Toxicological Sciences, 2017, 155, 300-301.	1.4	2
142	The exposome: purpose, definitions, and scope. , 2020, , 1-26.		2
143	HERCULES: An Academic Center to Support Exposome Research. , 2019, , 339-348.		2
144	The Exposome: Pursuing the Totality of Exposure. , 2020, , 3-10.		2

#	Article	IF	CITATIONS
145	GAIT-GM integrative cross-omics analyses reveal cholinergic defects in a C. elegans model of Parkinson's disease. Scientific Reports, 2022, 12, 3268.	1.6	2
146	The 53rd Annual Meeting of the Society of Toxicology From Phoenix, Arizona. Toxicological Sciences, 2014, 138, 1-2.	1.4	1
147	Young Investigators in Toxicology: Is There a Crisis?. Toxicological Sciences, 2015, 145, 2-4.	1.4	1
148	Bioinspired Honokiol Analogs and Their Evaluation for Activity on the Norepinephrine Transporter. Molecules, 2018, 23, 2536.	1.7	1
149	A Farewell to Harms: The Audacity to Design Safer Products. Toxicological Sciences, 2018, 161, 211-213.	1.4	1
150	Reproducibility Revisited: Reflections of an Editor. Toxicological Sciences, 2019, 169, 315-316.	1.4	1
151	DNA Microarrays to Analyze Gene Expression in Animals with Altered Transporter Expression. , 2003, 227, 61-70.		0
152	Neurotoxicity of Manufactured Nanoparticles. , 0, , 405-428.		0
153	Editorial: A Toxicological Transition. Toxicological Sciences, 2013, 135, 261-262.	1.4	0
154	Letters from Science Camp. Toxicological Sciences, 2015, 147, 301-301.	1.4	0
155	Society of Toxicology Board of Publications Best Paper Award for 2015. Toxicological Sciences, 2015, 144, 206-207.	1.4	0
156	A Golden Anniversary for the National Institute of Environmental Health Sciences. Toxicological Sciences, 2016, 154, 200-201.	1.4	0
157	Three Years After. Toxicological Sciences, 2016, 152, 262-263.	1.4	O
158	Society of Toxicology Board of Publications Best Paper Award for 2016. Toxicological Sciences, 2016, 150, 259-260.	1.4	0
159	Toxicology: Cajun Style. Toxicological Sciences, 2016, 150, 2-2.	1.4	0
160	2017 Toxicological Sciences Paper of the Year. Toxicological Sciences, 2017, 156, 313-314.	1.4	0
161	ToxSci at 20. Toxicological Sciences, 2018, 161, 3-4.	1.4	0
162	Toxicology and Tributaries in Texas. Toxicological Sciences, 2018, 162, 3-4.	1.4	0

#	Article	IF	CITATIONS
163	2018 Toxicological Sciences Paper of the Year: Assessing Fibrogenesis Using 3D-Printed Liver Tissues. Toxicological Sciences, 2018, 162, 339-340.	1.4	O
164	Nurturing science. , 2020, , 53-80.		0
165	Measuring exposures and their impacts: practical and analytical. , 2020, , 107-129.		0
166	Pathways and networks., 2020,, 155-179.		0
167	Innovation and the exposome. , 2020, , 131-154.		0
168	The exposome in the future. , 2020, , 237-267.		0
169	Editor-in-Chief response to "FAIR-ifying the <i>Exposome</i> Journal: templates for chemical structures and transformationsâ€, Exposome, 2022, 2, .	1.2	0
170	Evaluating Coâ€occurrence as a Criterion for Identification of Undocumented Xenobiotic Exposures in Human Metabolomics. FASEB Journal, 2022, 36, .	0.2	0
171	Using technology and exposomics to understand and address sleep health disparities. , 2022, , .		o