Dongsoo Koh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1908838/publications.pdf

Version: 2024-02-01

96 1,056 18 28 papers citations h-index g-index

96 96 96 1144
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Targeting Cancer Cells via the Reactive Oxygen Species-Mediated Unfolded Protein Response with a Novel Synthetic Polyphenol Conjugate. Clinical Cancer Research, 2014, 20, 4302-4313.	7.0	54
2	Relationship between the structures of flavonoids and their NF- \hat{l}° B-dependent transcriptional activities. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6036-6041.	2.2	49
3	Benzochalcones bearing pyrazoline moieties show anti-colorectal cancer activities and selective inhibitory effects on aurora kinases. Bioorganic and Medicinal Chemistry, 2013, 21, 7018-7024.	3.0	48
4	Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells. Bioorganic and Medicinal Chemistry, 2014, 22, 1809-1820.	3.0	47
5	Synthesis and complete assignment of NMR data of 20 chalcones. Magnetic Resonance in Chemistry, 2011, 49, 41-45.	1.9	43
6	Novel Antimitotic Activity of 2-Hydroxy-4-methoxy- $2\hat{a}\in^2$, $3\hat{a}\in^2$ -benzochalcone (HymnPro) through the Inhibition of Tubulin Polymerization. Journal of Agricultural and Food Chemistry, 2013, 61, 12588-12597.	5.2	41
7	A synthetic chalcone, 2'-hydroxy-2,3,5'-trimethoxychalcone triggers unfolded protein response-mediated apoptosis in breast cancer cells. Cancer Letters, 2016, 372, 1-9.	7.2	40
8	Chromenylchalcones showing cytotoxicity on human colon cancer cell lines and in silico docking with aurora kinases. Bioorganic and Medicinal Chemistry, 2013, 21, 4250-4258.	3.0	38
9	TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Experimental and Molecular Medicine, 2017, 49, e302-e302.	7.7	36
10	Anticancer and structure-activity relationship evaluation of 3-(naphthalen-2-yl)-N,5-diphenyl-pyrazoline-1-carbothioamide analogs of chalcone. Bioorganic Chemistry, 2016, 68, 166-176.	4.1	31
11	¹ H and ¹³ C NMR spectral assignments of 2′â€hydroxychalcones. Magnetic Resonance in Chemistry, 2013, 51, 364-370.	1.9	30
12	Structural Properties of Polyphenols Causing Cell Cycle Arrest at G1 Phase in HCT116 Human Colorectal Cancer Cell Lines. International Journal of Molecular Sciences, 2013, 14, 16970-16985.	4.1	30
13	A new synthetic 2′-hydroxy-2,4,6-trimethoxy-5′,6′-naphthochalcone induces G2/M cell cycle arrest and apoptosis by disrupting the microtubular network of human colon cancer cells. Cancer Letters, 2014, 354, 348-354.	7.2	30
14	Synthesis of methoxybenzoflavones and assignments of their NMR data. Magnetic Resonance in Chemistry, 2012, 50, 62-67.	1.9	27
15	Chromenylchalcones with inhibitory effects on monoamine oxidase B. Bioorganic and Medicinal Chemistry, 2013, 21, 7890-7897.	3.0	23
16	Biological evaluation of 2-pyrazolinyl-1-carbothioamide derivatives against HCT116 human colorectal cancer cell lines and elucidation on QSAR and molecular binding modes. Bioorganic and Medicinal Chemistry, 2017, 25, 5423-5432.	3.0	23
17	The synthetic chalcone derivative 2-hydroxy-3′,5,5′-trimethoxychalcone induces unfolded protein response-mediated apoptosis in A549 lung cancer cells. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2969-2975.	2.2	22
18	Quantitative Relationships Between the Cytotoxicity of Flavonoids on the Human Breast Cancer Stemâ€Like Cells <scp>MCF</scp> 7â€ <scp>SC</scp> and Their Structural Properties. Chemical Biology and Drug Design, 2015, 86, 496-508.	3.2	20

#	Article	IF	Citations
19	Chrysin Inhibits NF-κB-Dependent CCL5 Transcription by Targeting IκB Kinase in the Atopic Dermatitis-Like Inflammatory Microenvironment. International Journal of Molecular Sciences, 2020, 21, 7348.	4.1	20
20	A synthetic chalcone derivative, 2-hydroxy-3′,5,5′-trimethoxychalcone (DK-139), suppresses the TNFα-induced invasive capability of MDA-MB-231 human breast cancer cells by inhibiting NF-κB-mediated GROα expression. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 203-208.	2.2	17
21	Complete assignment of the 1H and 13C NMR spectra of resveratrol derivatives. Magnetic Resonance in Chemistry, 2001, 39, 768-770.	1.9	16
22	1 H and 13 C NMR spectral assignments of novel chromenylchalcones. Magnetic Resonance in Chemistry, 2012, 50, 759-764.	1.9	15
23	2-Hydroxy-3,4-naphthochalcone (2H-NC) inhibits TNFα-induced tumor invasion through the downregulation of NF-κB-mediated MMP-9 gene expression. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 128-132.	2.2	15
24	Colorectal anticancer activities of polymethoxylated 3-naphthyl-5-phenylpyrazoline-carbothioamides. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4301-4309.	2.2	15
25	A Novel Synthetic Material, BMM, Accelerates Wound Repair by Stimulating Re-Epithelialization and Fibroblast Activation. International Journal of Molecular Sciences, 2018, 19, 1164.	4.1	15
26	sup>1 H and $sup>13 C NMR spectral assignments of 18 novel polymethoxylated naphthochalcones bearing pyrazoline-1-carbothioamide groups. Magnetic Resonance in Chemistry, 2015, 53, 383-390.$	1.9	13
27	A synthetic chalcone derivative, 2-hydroxy-3′,5,5′-trimethoxychalcone (DK-139), triggers reactive oxygen species-induced apoptosis independently of p53 in A549 lung cancer cells. Chemico-Biological Interactions, 2019, 298, 72-79.	4.0	12
28	Overcoming Multidrug Resistance by Activating Unfolded Protein Response of the Endoplasmic Reticulum in Cisplatin-Resistant A2780/CisR Ovarian Cancer Cells. BMB Reports, 2020, 53, 88-93.	2.4	12
29	Anticancer activities of cyclohexenone derivatives. Applied Biological Chemistry, 2020, 63, .	1.9	12
30	¹ H and ¹³ C NMR spectral assignments of novel flavonoids bearing benzothiazepine. Magnetic Resonance in Chemistry, 2016, 54, 382-390.	1.9	11
31	Design, synthesis, and biological evaluation of chalcones for anticancer properties targeting glycogen synthase kinase 3 beta. Applied Biological Chemistry, 2022, 65, .	1.9	11
32	Complete NMR data of methoxylated <i>cis</i> à€•and <i>trans</i> â€stilbenes as well as 1,2â€diphenylethanes. Magnetic Resonance in Chemistry, 2011, 49, 374-377.	1.9	10
33	p53-dependent and -independent mechanisms are involved in (E)-1-(2-hydroxyphenyl)-3-(2-methoxynaphthalen-1-yl)prop-2-en-1-one (HMP)-induced apoptosis in HCT116 colon cancer cells. Biochemical and Biophysical Research Communications, 2016, 479, 913-919.	2.1	10
34	Inhibitory Effect of Synthetic Flavone Derivatives on Pan-Aurora Kinases: Induction of G2/M Cell-Cycle Arrest and Apoptosis in HCT116 Human Colon Cancer Cells. International Journal of Molecular Sciences, 2018, 19, 4086.	4.1	10
35	Disrupting the DNA Binding of EGR-1 with a Small-Molecule Inhibitor Ameliorates 2,4-Dinitrochlorobenzene-Induced Skin Inflammation. Journal of Investigative Dermatology, 2021, 141, 1851-1855.	0.7	10
36	¹ H and ¹³ C NMR spectral assignments of chalcones bearing pyrazolineâ€"carbothioamide groups. Magnetic Resonance in Chemistry, 2013, 51, 500-508.	1.9	9

#	Article	IF	Citations
37	Complete assignments of ¹ H and ¹³ C NMR data for 21 naphthalenylâ€phenylâ€pyrazoline derivatives. Magnetic Resonance in Chemistry, 2013, 51, 593-599.	1.9	9
38	Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. Journal of Biomedical Science, 2015, 22, 47.	7.0	9
39	Design, synthesis, and biological evaluation of polyphenols with 4,6-diphenylpyrimidin-2-amine derivatives for inhibition of Aurora kinase A. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 265-281.	2.0	9
40	Synthesis and structure elucidation of polyphenols containing the <i>N</i> ′â€methyleneformohydrazide scaffold as aurora kinase inhibitors. Magnetic Resonance in Chemistry, 2017, 55, 864-876.	1.9	8
41	Structure-activity relationships of polyphenols inhibiting lipopolysaccharide-induced NF-κB activation. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55, 669-675.	0.9	7
42	$^{\circ}$	1.9	7
43	¹ H and ¹³ C NMR spectral assignments of 19 novel polymethoxylated diphenylnaphthylpyrazolinylcarbothioamides. Magnetic Resonance in Chemistry, 2016, 54, 246-251.	1.9	7
44	Design, synthesis, and biological activities of 1-aryl-(3-(2-styryl)phenyl)prop-2-en-1-ones. Bioorganic Chemistry, 2019, 83, 438-449.	4.1	7
45	Crystal structure of 2-(3,4-dimethoxyphenyl)-3-hydroxy-4H-chromen-4-one. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 0999-01000.	0.2	6
46	Synthesis, Single Crystal X-Ray Structure, Hirshfeld Surface Analysis, DFT Computations, Docking Studies on Aurora Kinases and an Anticancer Property of 3-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-6-methoxy-4H-chromen-4-one. Crystals, 2020, 10, 413.	2,2	6
47	Design, synthesis, and evaluation of 4-chromenone derivatives combined with N-acylhydrazone for aurora kinase A inhibitor. Applied Biological Chemistry, 2021, 64, .	1.9	6
48	(E)-3-(3,5-Dimethoxyphenyl)-1-(1-hydroxynaphthalen-2-yl)prop-2-en-1-one. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3403-o3403.	0.2	5
49	Synthesis and biological evaluation of a novel pyrazolecarbothioamide derivative (DK115) inducing cell cycle arrest at the G1 phase in HCT116 human colon cancer cells. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56, 343-347.	0.9	5
50	¹ H and ¹³ C NMR characterization of 1,3,4â€oxadiazole derivatives. Magnetic Resonance in Chemistry, 2018, 56, 782-791.	1.9	5
51	Single Crystal X-Ray Structure for the Disordered Two Independent Molecules of Novel Isoflavone: Synthesis, Hirshfeld Surface Analysis, Inhibition and Docking Studies on IKK \hat{I}^2 of 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-6,7-dimethoxy-4H-chromen-4-one. Crystals, 2020, 10, 911.	2.2	5
52	Crystal structure of 2-(2,3-dimethoxynaphthalen-1-yl)-3-hydroxy-6-methoxy-4 <i>H</i> -chromen-4-one. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 0842-0843.	0.5	5
53	Investigation of 2-hydroxy-4-methoxy-2′,3′-benzochalcone binding to tubulin by using NMR and in silico docking. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57, 693-698.	0.9	4
54	A novel hydroxymethoxynaphthochalcone induces apoptosis through the p53-dependent caspase-mediated pathway in HCT116 human colon cancer cells. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57, 413-418.	0.9	4

#	Article	IF	Citations
55	¹ H and ¹³ C NMR spectral assignments of 18 novel polymethoxylated hydroxynaphthopyrazolylchalconoids. Magnetic Resonance in Chemistry, 2015, 53, 391-397.	1.9	4
56	A novel synthetic chalcone derivative promotes caspase-dependent apoptosis through ROS generation and activation of the UPR in MH7A cells. Genes and Genomics, 2015, 37, 1051-1059.	1.4	4
57	The chalcone derivative HymnPro generates reactive oxygen species through depletion of intracellular glutathione. Applied Biological Chemistry, 2016, 59, 391-396.	1.9	4
58	Synthetic polyphenol compounds inhibit \hat{l}^2 -catenin/Tcf signaling: Structure-activity relationship. Journal of Industrial and Engineering Chemistry, 2017, 56, 258-269.	5.8	4
59	¹ <scp>H</scp> and <scp>¹³C NMR</scp> spectral assignments of 25 ethyl 2â€oxocyclohexâ€3â€enecarboxylates. Magnetic Resonance in Chemistry, 2018, 56, 1188-1200.	1.9	4
60	A Novel Synthetic Compound (E)-5-((4-oxo-4H-chromen-3-yl)methyleneamino)-1-phenyl-1H-pyrazole-4-carbonitrile Inhibits TNFα-Induced MMP9 Expression via EGR-1 Downregulation in MDA-MB-231 Human Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 5080.	4.1	4
61	(E)-3-(3,5-Dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o514-o514.	0.2	4
62	(E)-1-(3,5-Dimethoxyphenyl)-3-(3-methoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o666-o666.	0.2	4
63	4-(3,5-Dimethoxyphenyl)-6-(2-methoxyphenyl)pyrimidin-2-amine. IUCrData, 2018, 3, .	0.3	4
64	Synthetic Diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates Induce Apoptosis. Medicinal Chemistry, 2018, 14, 851-862.	1.5	4
65	Synthesis, Crystal Structure, Hirshfeld Surface Analysis and Docking Studies of a Novel Flavone–Chalcone Hybrid Compound Demonstrating Anticancer Effects by Generating ROS through Glutathione Depletion. Crystals, 2022, 12, 108.	2.2	4
66	Conversion of flavonoids and their conformation by NMR and DFT. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57, 561-564.	0.9	3
67	¹ H and ¹³ C NMR spectral assignments of novel naphthalenylphenylpyrazolines. Magnetic Resonance in Chemistry, 2016, 54, 252-259.	1.9	3
68	Inhibition of EGR-1-dependent MMP1 transcription by ethanol extract of Ageratum houstonianum in HaCaT keratinocytes. Molecular Biology Reports, 2021, 48, 1-11.	2.3	3
69	¹ H and ¹³ C NMR spectral assignments of nineteen 5â€(3,5â€dimethoxyphenyl)â€3â€(2â€methoxyphenyl)â€2â€pyrazoline derivatives. Magnetic Resonance in Chem 2021, 59, 478-488.	ni ≛i 9y,	3
70	¹ H and ¹³ C NMR spectral assignments for 24 novel naphthalenylphenylpyrazolines. Magnetic Resonance in Chemistry, 2017, 55, 856-863.	1.9	2
71	Cell growth inhibitory effects of polyphenols with naphthalene skeleton against cisplatin-resistant ovarian cancer cells. Applied Biological Chemistry, 2018, 61, 697-701.	1.9	2
72	Relation between structures of naphthalenylchalcone derivatives and their cytotoxic effects on HCT116 human colon cancer cells. Applied Biological Chemistry, 2018, 61, 267-272.	1.9	2

#	Article	IF	CITATIONS
73	Clonogenic long-term survival assay of HCT 116 colorectal cancer cells after treatment with the synthesized diphenyl imidazoline derivatives. Applied Biological Chemistry, 2018, 61, 303-312.	1.9	2
74	Design, synthesis, and biological activities of 3-((4,6-diphenylpyrimidin-2-ylamino)methylene)-2,3-dihydrochromen-4-ones. Bioorganic Chemistry, 2022, 120, 105634.	4.1	2
75	Stereochemical Elucidation of Norbornene Derivatives Synthesized as Leukotriene D4 Receptor Antagonists. Spectroscopy Letters, 2003, 36, 407-418.	1.0	1
76	8-Methoxy-2H-chromene-3-carbaldehyde. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3419-o3419.	0.2	1
77	3-Methoxy-2-[5-(naphthalen-2-yl)-4,5-dihydro-1H-pyrazol-3-yl]phenol. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o464-o464.	0.2	1
78	Crystal structure of (E)-3-(2,4-dimethoxyphenyl)-1-(1-hydroxynaphthalen-2-yl)prop-2-en-1-one. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1034-o1035.	0.2	1
79	¹ H and ¹³ C NMR spectral assignments of 30 novel <i>n</i> polyphenols containing thiourea skeletons. Magnetic Resonance in Chemistry, 2016, 54, 403-413.	1.9	1
80	A methoxyflavanone derivative, 2′,3′,4′-trimethoxy-5,6-naphthoflavanone, inhibits proliferation of HCT11-human colon cancer cells by inducing G2/M cell cycle arrest and apoptosis. Applied Biological Chemistry, 2016, 59, 249-253.	6 1.9	1
81	A Synthetic Pan-Aurora Kinase Inhibitor, 5-Methoxy-2-(2-methoxynaphthalen-1-yl)-4H-chromen-4-one, Triggers Reactive Oxygen Species-Mediated Apoptosis in HCT116 Colon Cancer Cells. Journal of Chemistry, 2020, 2020, 1-11.	1.9	1
82	¹ H and ¹³ C NMR spectral assignments of twentyâ€six 1â€arylâ€5â€(2â€(styryl)phenyl)pentaâ€1,4â€dienâ€3â€ones. Magnetic Resonance in Chemistry, 2020, 58, 334-	3 4 6.	1
83	Crystal structure of (<i>E</i>)-4,6-dimethoxy-2-(4-methoxystyryl)-3-methylbenzaldehyde. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 0771-0771.	0.5	1
84	(<i>E</i>)-3-(2,3-Dimethoxyphenyl)-1-(2-hydroxy-5-methoxyphenyl)prop-2-en-1-one. IUCrData, 2016, 1, .	0.3	1
85	Crystal structure of 6-methoxy-3-(5-(3-methoxyphenyl)-1,3,4-oxadiazol-2-yl)-4 <i>H</i> -chromen-4-one-methanol (1/1), C ₂₀ H ₁₈ N ₂ O ₆ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2020, 235, 1253-1255.	0.3	1
86	Crystal structure of 1-(8-methoxy-2H-chromen-3-yl)ethanone. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o936-o937.	0.2	0
87	A Benzochalcone Derivative, (<i>E</i>)-1-(2-hydroxy-6-methoxyphenyl)-3-(naphthalen-2-yl)prop-2-en-1-one (DK-512), Inhibits Tumor Invasion through Inhibition of the TNF <i>α</i> -Induced NF- <i>P</i> B/MMP-9 Axis in MDA-MB-231 Breast Cancer Cells. Journal of Chemistry, 2016, 2016, 1-8.	1.9	0
88	Crystal structure of (E)-3-(dimethylamino)-1-(thiophen-3-yl)prop-2-en-1-one, C9H11NOS. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 871-872.	0.3	0
89	Crystal structure of (<i>E</i>)-ethyl 2-((4-oxo-4 <i>H</i> -chromen-3-yl)methyleneaminooxy)acetate, C ₁₄ H ₁₃ NO ₅ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 1135-1137.	0.3	0
90	(E)-1-(1-Hydroxynaphthalen-2-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o542-o542.	0.2	0

#	Article	IF	CITATIONS
91	(E)-1-(2-Hydroxy-6-methoxyphenyl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1809-o1809.	0.2	O
92	Crystal structure of 3,5-dimethoxy-2-[5-(naphthalen-1-yl)-4,5-dihydro-1H-pyrazol-3-yl]phenol. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, o708-o709.	0.5	0
93	Crystal structure of 3-methoxy-2-[5-(naphthalen-1-yl)-4,5-dihydro-1H-pyrazol-3-yl]phenol. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 0828-0829.	0.5	O
94	The crystal structure of 2-(2,3-dimethoxyphenyl)-3-hydroxy-4 <i>H</i> -chromen-4-one, C ₁₇ H ₁₄ O ₅ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2020, 235, 913-914.	0.3	0
95	The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4 <i>H</i> -chromene-3-carboxylate, C ₂₀ H ₂₁ F ₂ NO ₄ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 307-309.	0.3	0

¹H and ¹³C NMR spectral assignment of 29
<i>N</i>′â€(3â€([1,1′â€biphenyl]â€4â€yl)â€1â€phenylâ€1<i>H</i>â€pyrazolâ€4â€yl)acylhydrazones. Magnæøc Resorance in Chemistry, 2021, 59, 648-662.