Shude Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1908442/publications.pdf

Version: 2024-02-01

117453 197535 5,076 48 34 49 citations h-index g-index papers 52 52 52 4484 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Flower-like Copper Cobaltite Nanosheets on Graphite Paper as High-Performance Supercapacitor Electrodes and Enzymeless Glucose Sensors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3258-3267.	4.0	325
2	Hierarchical MnCo-layered double hydroxides@Ni(OH) ₂ core–shell heterostructures as advanced electrodes for supercapacitors. Journal of Materials Chemistry A, 2017, 5, 1043-1049.	5.2	296
3	Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite $MCo < sub > 2 < / sub > 0 < sub > 4 < / sub > (M = Mn, Ni, Cu, and Co)$. Journal of Materials Chemistry A, 2018, 6, 10674-10685.	5.2	266
4	Recent Advances in Vanadiumâ€Based Aqueous Rechargeable Zincâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000477.	10.2	265
5	Vertically stacked bilayer CuCo ₂ O ₄ /MnCo ₂ O ₄ heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2016, 4, 8061-8071.	5.2	244
6	Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Storage Materials, 2020, 32, 167-177.	9.5	228
7	Hierarchical manganese cobalt sulfide core–shell nanostructures for high-performance asymmetric supercapacitors. Journal of Power Sources, 2017, 342, 629-637.	4.0	221
8	New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Storage Materials, 2019, 22, 384-396.	9.5	189
9	Challenges and Strategies toward Cathode Materials for Rechargeable Potassiumâ€kon Batteries. Advanced Materials, 2021, 33, e2004689.	11.1	188
10	Unlocking the Potential of Oxygen-Deficient Copper-Doped Co ₃ O ₄ Nanocrystals Confined in Carbon as an Advanced Electrode for Flexible Solid-State Supercapacitors. ACS Energy Letters, 2021, 6, 3011-3019.	8.8	173
11	Recent Advances and Perspectives of Battery-Type Anode Materials for Potassium Ion Storage. ACS Nano, 2021, 15, 18931-18973.	7.3	160
12	Highâ€Performance Flexible Quasiâ€Solidâ€State Supercapacitors Realized by Molybdenum Dioxide@Nitrogenâ€Doped Carbon and Copper Cobalt Sulfide Tubular Nanostructures. Advanced Science, 2018, 5, 1800733.	5.6	156
13	Phosphorous-containing oxygen-deficient cobalt molybdate as an advanced electrode material for supercapacitors. Energy Storage Materials, 2019, 19, 186-196.	9.5	145
14	Conceptual design of three-dimensional CoN/Ni ₃ N-coupled nanograsses integrated on N-doped carbon to serve as efficient and robust water splitting electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 4466-4476.	5.2	143
15	Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 24053-24064.	5.2	133
16	Effect of fluorine doping and sulfur vacancies of CuCo2S4 on its electrochemical performance in supercapacitors. Chemical Engineering Journal, 2020, 390, 124643.	6.6	132
17	Carbonaceous Anode Materials for Non-aqueous Sodium- and Potassium-Ion Hybrid Capacitors. ACS Energy Letters, 2021, 6, 4127-4154.	8.8	129
18	Facile Synthesis of Microsphere Copper Cobalt Carbonate Hydroxides Electrode for Asymmetric Supercapacitor. Electrochimica Acta, 2016, 188, 898-908.	2.6	126

#	Article	IF	CITATIONS
19	Honeycomb-Like Interconnected Network of Nickel Phosphide Heteronanoparticles with Superior Electrochemical Performance for Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 21829-21838.	4.0	123
20	Amorphous Phosphorus-Incorporated Cobalt Molybdenum Sulfide on Carbon Cloth: An Efficient and Stable Electrocatalyst for Enhanced Overall Water Splitting over Entire pH Values. ACS Applied Materials & Diterfaces, 2017, 9, 37739-37749.	4.0	122
21	1 D Hierarchical MnCo ₂ O ₄ Nanowire@MnO ₂ Sheet Core–Shell Arrays on Graphite Paper as Superior Electrodes for Asymmetric Supercapacitors. ChemNanoMat, 2015, 1, 593-602.	1.5	111
22	Atomicâ€Level Platinum Filling into Niâ€Vacancies of Dualâ€Deficient NiO for Boosting Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2022, 12, .	10.2	110
23	Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors. Journal of Materials Chemistry A, 2017, 5, 4543-4549.	5.2	105
24	Mixed-phase bismuth ferrite nanoflake electrodes for supercapacitor application. Applied Nanoscience (Switzerland), 2016, 6, 511-519.	1.6	92
25	Phosphorus Regulated Cobalt Oxide@Nitrogenâ€Doped Carbon Nanowires for Flexible Quasiâ€Solidâ€State Supercapacitors. Small, 2020, 16, e1906458.	5.2	90
26	Realizing Superior Redox Kinetics of Hollow Bimetallic Sulfide Nanoarchitectures by Defectâ€Induced Manipulation toward Flexible Solidâ€State Supercapacitors. Small, 2022, 18, e2104507.	5.2	85
27	Phosphorus dual-site driven CoS ₂ @S, N co-doped porous carbon nanosheets for flexible quasi-solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 26618-26630.	5.2	82
28	Phosphorusâ€Mediated MoS ₂ Nanowires as a Highâ€Performance Electrode Material for Quasiâ€Solidâ€State Sodiumâ€Ion Intercalation Supercapacitors. Small, 2019, 15, e1803984.	5.2	81
29	Cobalt carbonate hydroxides as advanced battery-type materials for supercapatteries: Influence of morphology on performance. Electrochimica Acta, 2018, 259, 1037-1044.	2.6	70
30	Ultrathin nanosheet-assembled nickel-based metal–organic framework microflowers for supercapacitor applications. Chemical Communications, 2022, 58, 1009-1012.	2.2	68
31	3D yolk–shell NiGa ₂ S ₄ microspheres confined with nanosheets for high performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 6292-6298.	5.2	52
32	An asymmetric supercapacitor with excellent cycling performance realized by hierarchical porous NiGa ₂ O ₄ nanosheets. Journal of Materials Chemistry A, 2017, 5, 19046-19053.	5.2	48
33	Potentiodynamic polarization assisted phosphorus-containing amorphous trimetal hydroxide nanofibers for highly efficient hybrid supercapacitors. Journal of Materials Chemistry A, 2020, 8, 5721-5733.	5.2	38
34	Nickel hydroxide/chemical vapor deposition-grown graphene/nickel hydroxide/nickel foam hybrid electrode for high performance supercapacitors. Electrochimica Acta, 2019, 297, 479-487.	2.6	37
35	Defect engineering induced heterostructure of Zn-birnessite@spinel ZnMn2O4 nanocrystal for flexible asymmetric supercapacitor. Chemical Engineering Journal, 2022, 430, 133115.	6.6	32
36	An unexpected phase-transformation of cobalt–vanadium layered double hydroxides toward high energy density hybrid supercapacitor. Journal of Power Sources, 2021, 486, 229341.	4.0	25

#	Article	IF	Citations
37	Boosting capacitive performance of manganese oxide nanorods by decorating with three-dimensional crushed graphene. Nano Convergence, 2022, 9, 10.	6.3	23
38	A systematic approach to achieve high energy density hybrid supercapacitors based on Ni–Co–Fe hydroxide. Electrochimica Acta, 2020, 353, 136578.	2.6	22
39	Photovoltaicâ€powered supercapacitors for driving overall water splitting: A dualâ€modulated 3D architecture. , 2022, 4, 1262-1273.		21
40	Temperature influenced chemical growth of hydrous copper oxide/hydroxide thin film electrodes for high performance supercapacitors. Journal of Alloys and Compounds, 2017, 701, 1009-1018.	2.8	18
41	Interfacial Assembled CeO _{2–<i>x</i>} /Co@N-Doped Carbon Hollow Nanohybrids for High-Performance Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 14451-14460.	3.2	16
42	Simultaneous integration of low-level rhenium (Re) doping and nitrogen-functionalized 3D carbon backbone into nickel-iron hydroxide (NiFeOH) to amplify alkaline water electrolysis at high current densities. Chemical Engineering Journal, 2022, 435, 135184.	6.6	13
43	N-doped hollow carbon nanoplates with mesoporous thin shells towards high-performance supercapacitors. Journal of Power Sources, 2022, 542, 231776.	4.0	12
44	Morphology-inspired low-temperature liquefied petroleum gas sensors of indium oxide. Scripta Materialia, 2015, 107, 54-58.	2.6	9
45	CeO2â^'x quantum dots decorated nitrogen-doped hollow porous carbon for supercapacitors. Journal of Colloid and Interface Science, 2022, 622, 147-155.	5.0	9
46	Cu ₂ Oâ^Cu ₂ Se Mixedâ€Phase Nanoflake Arrays: pHâ€Universal Hydrogen Evolution Reactions with Ultralow Overpotential. ChemElectroChem, 2019, 6, 5014-5021.	1.7	8
47	Strong Jahn-Teller effect at NiO4 tetrahedron in NiCo2O4 spinel. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126114.	0.9	4
48	Phosphorus-Mediated MoS2: Phosphorus-Mediated MoS2 Nanowires as a High-Performance Electrode Material for Quasi-Solid-State Sodium-Ion Intercalation Supercapacitors (Small 4/2019). Small, 2019, 15, 1970026.	5.2	3