
Fabrice Matichard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1908257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental noise in advanced LIGO detectors. Classical and Quantum Gravity, 2021, 38, 145001.	1.5	38
2	LIGOâ $€$ [™] s quantum response to squeezed states. Physical Review D, 2021, 104, .	1.6	19
3	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
4	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Physical Review D, 2020, 102, .	1.6	196
5	Frequency-Dependent Squeezing for Advanced LIGO. Physical Review Letters, 2020, 124, 171102.	2.9	99
6	Low phase noise squeezed vacuum for future generation gravitational wave detectors. Classical and Quantum Gravity, 2020, 37, 185014.	1.5	5
7	Advanced LIGO squeezer platform for backscattered light and optical loss reduction. Classical and Quantum Gravity, 2020, 37, 215015.	1.5	2
8	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 2019, 123, 231107.	2.9	359
9	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
10	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
11	Quantum correlation measurements in interferometric gravitational-wave detectors. Physical Review A, 2017, 95, .	1.0	16
12	Subtracting Tilt from a Horizontal Seismometer Using a Groundâ€Rotation Sensor. Bulletin of the Seismological Society of America, 2017, 107, 709-717.	1.1	24
13	Modeling and experiment of the suspended seismometer concept for attenuating the contribution of tilt motion in horizontal measurements. Review of Scientific Instruments, 2016, 87, 065002.	0.6	9
14	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Physical Review D, 2016, 93, .	1.6	286
15	On the Use of Mechanical Filters to Attenuate the Transmission of Tilt Motion to Inertial Sensors. Bulletin of the Seismological Society of America, 2016, 106, 987-1001.	1.1	2
16	Ultra-low phase noise squeezed vacuum source for gravitational wave detectors. Optica, 2016, 3, 682.	4.8	52
17	Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance. Classical and Quantum Gravity, 2015, 32, 185003.	1.5	141
18	Sensor fusion methods for high performance active vibration isolation systems. Journal of Sound and Vibration, 2015, 342, 1-21.	2.1	20

FABRICE MATICHARD

#	Article	IF	CITATIONS
19	Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: Design and production overview. Precision Engineering, 2015, 40, 273-286.	1.8	66
20	Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 2: Experimental investigation and tests results. Precision Engineering, 2015, 40, 287-297.	1.8	44
21	Review: Tiltâ€Free Lowâ€Noise Seismometry. Bulletin of the Seismological Society of America, 2015, 105, 497-510.	1.1	28
22	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
23	Dynamics Enhancements of Advanced LIGO Multi-Stage Active Vibration Isolators and Related Control Performance Improvement. , 2012, , .		2
24	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
25	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	2.9	83
26	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	1.2	123
27	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	1.6	83
28	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
29	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	1.5	22
30	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	2.9	69
31	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	1.6	160
32	A Nonlinear Method for Improving the Active Control Efficiency of Smart Structures Subjected to Rigid Body Motions. IEEE/ASME Transactions on Mechatronics, 2007, 12, 542-548.	3.7	18
33	Hybrid modeling for the active control of multibody smart structures – modeling validation. International Journal of Applied Electromagnetics and Mechanics, 2006, 23, 165-175.	0.3	1
34	Hybrid modal nodal method for multibody smart structure model reduction: application to modal feedback control. Smart Materials and Structures, 2006, 15, 1887-1898.	1.8	3
35	Improvement of potential energy exchange using nonlinear control. , 0, , .		4
36	Nonlinear approach for the control of mechanical coupling effects and smart structures of limited power. , 0, , .		3