Rodrigo GonzÃ;lez-Barrios

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1908168/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Molecular Therapy - Nucleic Acids, 2020, 20, 409-420.	5.1	242
2	The role of the histone demethylase KDM4A in cancer. Cancer Genetics, 2015, 208, 215-224.	0.4	66
3	Association between ERCC1 and XPA expression and polymorphisms and the response to cisplatin in testicular germ cell tumours. British Journal of Cancer, 2013, 109, 68-75.	6.4	52
4	Epidrug Repurposing: Discovering New Faces of Old Acquaintances in Cancer Therapy. Frontiers in Oncology, 2020, 10, 605386.	2.8	44
5	The promising role of new molecular biomarkers in prostate cancer: from coding and non-coding genes to artificial intelligence approaches. Prostate Cancer and Prostatic Diseases, 2022, 25, 431-443.	3.9	44
6	The use of long non-coding RNAs as prognostic biomarkers and therapeutic targets in prostate cancer. Oncotarget, 2018, 9, 20872-20890.	1.8	35
7	Disruption of CTCF at the miR-125b1 locus in gynecological cancers. BMC Cancer, 2012, 12, 40.	2.6	33
8	Comparative transcriptome analysis reveals key epigenetic targets in SARS-CoV-2 infection. Npj Systems Biology and Applications, 2021, 7, 21.	3.0	32
9	Sexâ€dependent pronociceptive role of spinal α ₅ â€GABA _A receptor and its epigenetic regulation in neuropathic rodents. Journal of Neurochemistry, 2021, 156, 897-916.	3.9	24
10	The epigenetic factor BORIS (CTCFL) controls the androgen receptor regulatory network in ovarian cancer. Oncogenesis, 2019, 8, 41.	4.9	17
11	Palmitic Acid-Induced NAD+ Depletion is Associated with the Reduced Function of SIRT1 and Increased Expression of BACE1 in Hippocampal Neurons. Neurochemical Research, 2019, 44, 1745-1754.	3.3	15
12	Assembling pieces of the centromere epigenetics puzzle. Epigenetics, 2012, 7, 3-13.	2.7	14
13	CTCF-KDM4A complex correlates with histone modifications that negatively regulate <i>CHD5</i> gene expression in cancer cell lines. Oncotarget, 2018, 9, 17028-17042.	1.8	7
14	Landscape of Germline Genetic Variants in AGT, MGMT, and TP53 in Mexican Adult Patients with Astrocytoma. Cellular and Molecular Neurobiology, 2021, 41, 1285-1297.	3.3	5
15	Genomics and epigenomics of axolotl regeneration. International Journal of Developmental Biology, 2021, 65, 465-474.	0.6	5
16	CTCFL regulates the PI3K-Akt pathway and it is a target for personalized ovarian cancer therapy. Npj Systems Biology and Applications, 2022, 8, 5.	3.0	5
17	Largeâ€scale topological disruption of chromosome territories 9 and 22 is associated with nonresponse to treatment in <scp>CML</scp> . International Journal of Cancer, 2022, 150, 1455-1470.	5.1	5
18	Genomic Profile in a Non-Seminoma Testicular Germ-Cell Tumor Cohort Reveals a Potential Biomarker of Sensitivity to Platinum-Based Therapy. Cancers, 2022, 14, 2065.	3.7	5

#	Article	IF	CITATIONS
19	MAD2Î ³ , a novel MAD2 isoform, reduces mitotic arrest and is associated with resistance in testicular germ cell tumors. Cell Cycle, 2016, 15, 2066-2076.	2.6	4
20	Differential distribution of HP1 proteins after trichostatin a treatment influences chromosomal stability in HCT116 and WI-38 cells. Cell Division, 2014, 9, 6.	2.4	3
21	Histamine Modulates Midbrain Dopamine Neuron Differentiation Through the Regulation of Epigenetic Marks. Frontiers in Cellular Neuroscience, 2019, 13, 215.	3.7	3
22	Transcriptional Profiles Reveal Deregulation of Lipid Metabolism and Inflammatory Pathways in Neurons Exposed to Palmitic Acid. Molecular Neurobiology, 2021, 58, 4639-4651.	4.0	3
23	Methylation of <i>DAPK</i> and <i>THBS1</i> genes in esophageal gastric-type columnar metaplasia. World Journal of Gastroenterology, 2016, 22, 4567.	3.3	3
24	Function of HP1 proteins as a component in kinetochore formation and its relation with chromosome instability. Epigenetics and Chromatin, 2013, 6, .	3.9	0
25	Association between <i>ERCC1</i> and <i>XPA</i> expression and polymorphisms and the response to cisplatin in patients with non-seminomatous testicular germ cell tumors Journal of Clinical Oncology, 2013, 31, 4555-4555.	1.6	0
26	Abstract 542: Regulation of the telomere healing process by the IncRNA TERRA. , 2014, , .		0
27	Abstract 5176: Topological characterization of chromosome territories 9 and 22 and BCR-ABL1 genes in bone marrow CD34+ cells. , 2019, , .		0