Michael J Wilberg

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/1908134/publications.pdf
Version: 2024-02-01

capture-recapture population estimation. Molecular Ecology Notes, 2004, 4, 783-785.
Overfishing, disease, habitat loss, and potential extirpation of oysters in upper Chesapeake Bay. Marine
Ecology - Progress Series, 2011, 436, 131-144.

The increasing importance of marine recreational fishing in the US: Challenges for management.
0.9
11 An Evaluation of Harvest Control Rules for Dataâ€Poor Fisheries. North American Journal of FisheriesManagement, 2013, 33, 845-860.
0.5 42Forty years of fishing: changes in age structure and stock mixing in northwestern Atlantic bluefin
12 tuna (<i>Thunnus thynnus</i>) associated with size-selective and long-term exploitation. ICES Journal1.2of Marine Science, 2016, 73, 2518-2528.
Historic and Modern Abundance of Wild Lean Lake Trout in Michigan Waters of Lake Superior:
Implications for Restoration Goals. North American Journal of Fisheries Management, 2003, 23, 100-108.Closing the feedback loop: on stakeholder participation in management strategy evaluation. CanadianJournal of Fisheries and Aquatic Sciences, 2019, 76, 1895-1913.
19 Journal of Fisheries and Aquatic Sciences, 2019, 76, 1895-1913.

Effects of sourceâe"sink dynamics on harvest policy performance for yellow perch in southern Lake Michigan. Fisheries Research, 2008, 94, 282-289.
0.9
0.7

27

The Path to an Ecosystem Approach for Forage Fish Management: A Case Study of Atlantic Menhaden.
Frontiers in Marine Science, 2021, 8, .
1.2

Regional trends in fish mean length at age: components of variance and the statistical power to detect trends. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64, 968-978.
0.7

An age- and sex-structured assessment model for American eels (<i>Anguilla rostrata</i>) in the
Potomac River, Maryland. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 1024-1037.
0.7

An evaluation of acceptable biological catch (ABC) harvest control rules designed to limit
overfishing. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 1028-1040.
0.7

20
25 Demographics and Parasitism of American Eels in the Chesapeake Bay, USA. Transactions of the

American Fisheries Society, 2010, 139, 1699-1710.
$0.6 \quad 18$

26 Estimation of movement and mortality of Atlantic menhaden during 1966ấ"1969 using a Bayesian
multi-state mark-recovery model. Fisheries Research, 2019, 210, 204-213.
$0.9 \quad 17$

When are model-based stock assessments rejected for use in management and what happens then?.
When are model-based stock assessments
Fisheries Research, 2020, 224, 105465.
0.9

17

28 Calibration of a bioenergetics model linking primary production to Atlantic menhaden Brevoortia
tyrannus growth in Chesapeake Bay. Marine Ecology - Progress Series, 2011, 437, 253-267.
0.9

17

Surplus Production Model Accuracy in Populations Affected by a No-Take Marine Protected Area.
Marine and Coastal Fisheries, 2012, 4, 511-525.

An evaluation of the synchronization in the dynamics of blue crab 〈i> (Callinectes sapidus)
$30 \quad$ populations in the western 〈scp>A</scp>tlantic. Fisheries Oceanography, 2014, 23, 132-146.
0.9

16

31 Steering the Global Partnership for Oceans. Marine Resource Economics, 2014, 29, 1-16.
1.1

15

32 Autocorrelated error in stock assessment estimates: Implications for management strategy evaluation. Fisheries Research, 2015, 172, 325-334.
0.9

15
\square
Survival of Juvenile Lake Trout Stocked in Western Lake Huron during 1974â€"1992. North American
Journal of Fisheries Management, 2002, 22, 213-218.
0.5

13

Estimation of recreational bag limit noncompliance using contact creel survey data. Fisheries

Research, 2009, 99, 239-243.

A spatial age-structured model for describing sea lamprey (<i>Petromyzon marinus</i>) population
dynamics. Canadian lournal of Fisheries and Aquatic Sciences, 2013, 70, 1709-1722.
0.7

13
dynamics. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1709-1722.
0.7

Trends in Relative Abundance and Early Life Survival of Atlantic Menhaden during 1977âe"2013 from
1139-1151.

Valuing changes in frequency of fish stock assessments. Canadian Journal of Fisheries and Aquatic
Sciences, 2019, 76, 1640-1652.

Sex Ratios and Average Sperm per Female Blue Crab Callinectes sapidus in Six Tributaries of Chesapeake Bay. Marine and Coastal Fisheries, 2016, 8, 492-501.

A performance evaluation of surplus production models with time-varying intrinsic growth in
A performance evaluation of surplus production models with time-varying intrinsic growth in
dynamic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 2245-2255.
$0.7 \quad 11$

Management Evaluation for the Chesapeake Bay Blue Crab Fishery: An Integrated Bioeconomic
Approach. North American Journal of Fisheries Management, 2015, 35, 216-228.

Physiological processes and gross energy budget of the submerged longline-cultured Pacific oyster
Crassostrea gigas in a temperate bay of Korea. PLoS ONE, 2018, 13, e0199752.

Population dynamics of eastern oysters in the Choptank River Complex, Maryland during 1989 â $€^{\prime \prime} 2015$.
Fisheries Research, 2019, 212, 196-207.

Evaluation of fishery-induced sperm limitation in Chesapeake Bay blue crab using an individual-based
model. Marine Ecology - Progress Series, 2018, 596, 127-142.
0.9

Effects of Temperature on Age-0 Atlantic Menhaden Growth in Chesapeake Bay. Transactions of the
American Fisheries Society, 2014, 143, 1255-1265.

Learning by doing: collaborative conceptual modelling as a path forward in ecosystem-based
management. ICES Journal of Marine Science, 2021, 78, 1217-1228.

Performance of Surplus Production Models with Time-Varying Parameters for Assessing Multispecies
Assemblages. North American Journal of Fisheries Management, 2012, 32, 1137-1145.

Effects of location errors on estimates of dredge catchability from depletion based methods.
Fisheries Research, 2013, 148, 1-8.

Factors affecting the abundance of age-0 Atlantic menhaden (Brevoortia tyrannus) in Chesapeake Bay.
ICES Journal of Marine Science, 2016, 73, 2238-2251.

Patterns in oyster natural mortality in Chesapeake Bay, Maryland using a Bayesian model. Fisheries
Research, 2021, 236, 105838.

A bioeconomic approach towards improved fishery management of Monomia haanii in the southern
Taiwan Strait, China. Fisheries Research, 2021, 240, 105969.

Trends in Abundance Indices of Fishes in Marylandâ $€^{T M}$ s Coastal Bays During 1972â $€^{"} 2009$. Estuaries and
Coasts, 2014, 37, 791-800.

Simulating bottom-up effects on predator productivity and consequences for the rebuilding timeline of a depleted population. Ecological Modelling, 2015, 311, 48-62.

Spawning locations and larval dispersal of Atlantic Menhaden during 1977â€ ${ }^{\text {«201 }}$. ICES Journal of
Marine Science, 2017, 74, 1574-1586.
1.2
.2
5

Spatial population dynamics of eastern oyster in the Chesapeake Bay, Maryland. Fisheries Research,
2021, 237, 105854.
55

Fleet Dynamics of the Commercial Lake Trout Fishery in Michigan Waters of Lake Superior during 1929â€"1961. Journal of Great Lakes Research, 2004, 30, 252-266.
$\left.\begin{array}{lll}\text { Tradeoff between Assessment and Control of Aquatic Invasive Species: A Case Study of Sea Lamprey } \\ \text { Management in the St. Marys River. North American Journal of Fisheries Management, 2016, 36, 11-20. }\end{array}\right] .0 .5$
Developing Precautionary Reference Points for Fishery Management Using Robust Control Theory:
Application to the Chesapeake Bay Blue CrabCallinectes sapidusFishery. Marine and Coastal Fisheries,
2019,11, 177-188.

60 Ranking ecosystem impacts on Chesapeake Bay blue crab (<i>Callinectes sapidus<|i>) using empirical
$0.7 \quad 2$
Gaussian Graphical Models. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 245-254.
Comparing methods for estimating larval sea lamprey (Petromyzon marinus) density in the St. Marys
River for the purposes of control. Journal of Great Lakes Research, 2014, 40, 739-747.
0.8

1

Multi-state dead recovery mark-recovery model performance for estimating movement and mortality
rates. Fisheries Research, 2019, 210, 214-223.
$0.9 \quad 1$

63	Growth of the longline-cultured sea squirt Halocynthia roretzi in a temperate bay of Korea: Biochemical composition and physiological energetics. Aquaculture, 2020, 516, 734526.	1.7	1
64	Using censored regression when estimating abundance with CPUE data to account for daily catch limits. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 716-722.	0.7	1
65	A Simulationâ€Based Evaluation of Commercial Port Sampling Programs for the Culf and Atlantic Menhaden Fisheries. North American Journal of Fisheries Management, 2020, 40, 995-1006.	0.5	1
66	Effects of Infectious Diseases on Population Dynamics of Marine Organisms in Chesapeake Bay. Estuaries and Coasts, 2021, 44, 2334-2349.	1.0	1
67	A spatial simulation approach to hydroacoustic survey design: A case study for Atlantic menhaden. Fisheries Research, 2020, 222, 105402.	0.9	0

