Cheng-Hui Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1908133/cheng-hui-li-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 3,914 91 30 h-index g-index citations papers 4,696 6.8 5.68 96 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
91	A combined strategy of room-temperature plasma activation and chemical treatment to toughen the interfacial adhesion of fluoropolymers. <i>Chemical Engineering Journal</i> , 2022 , 435, 135006	14.7	1
90	A silver-functionalized metalBrganic framework with effective antibacterial activity. <i>New Journal of Chemistry</i> , 2022 , 46, 5922-5926	3.6	1
89	Efficient and Stable Wide-Bandgap Perovskite Solar Cells Derived from a Thermodynamic Phase-Pure Intermediate. <i>Solar Rrl</i> , 2022 , 6, 2100906	7.1	4
88	Universal Self-Healing Poly(dimethylsiloxane) Polymer Crosslinked Predominantly by Physical Entanglements. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	9
87	Superstretchable, thermostable and ultrahigh-loading lithiumBulfur batteries based on nanostructural gel cathodes and gel electrolytes. <i>Nano Energy</i> , 2021 , 80, 105510	17.1	25
86	A Facile Synthetic Method and New Derivatives of Phthalorubines. <i>Acta Chimica Sinica</i> , 2021 , 79, 81	3.3	1
85	Coordination Strategy Driving the Formation of Compact CuSCN Hole-Transporting Layers for Efficient Perovskite Solar Cells. <i>Solar Rrl</i> , 2021 , 5, 2000777	7.1	2
84	A Fast and Room-temperature Self-healing Thermal Conductive Polymer Composite. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2021 , 39, 1328-1336	3.5	4
83	A Tough and Self-Healing Polymer Enabled by Promoting Bond Exchange in Boronic Esters with Neighboring Hydroxyl Groups 2021 , 3, 1328-1338		7
82	Interfacial engineering of CuSCN-based perovskite solar cells via PMMA interlayer toward enhanced efficiency and stability. <i>New Journal of Chemistry</i> , 2021 , 45, 13168-13174	3.6	1
81	Improving the capacity and cycling-stability of LithiumBulfur batteries using self-healing binders containing dynamic disulfide bonds. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 2760-2767	5.8	15
80	A Self-Healing Polymer with Fast Elastic Recovery upon Stretching. <i>Molecules</i> , 2020 , 25,	4.8	6
79	Self-Healing Polymers Based on Coordination Bonds. <i>Advanced Materials</i> , 2020 , 32, e1903762	24	116
78	A Supramolecular Polymer Formed by Small Molecules. <i>Cell Reports Physical Science</i> , 2020 , 1, 100144	6.1	6
77	A Dielectric Elastomer Actuator That Can Self-Heal Integrally. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 44137-44146	9.5	16
76	A Self-Healing and Shape Memory Polymer that Functions at Body Temperature. <i>Molecules</i> , 2019 , 24,	4.8	28
75	New insights into the mechanical and self-healing properties of polymers cross-linked by Fe(III)-2,6-pyridinedicarboxamide coordination complexes. <i>Polymer Chemistry</i> , 2019 , 10, 362-371	4.9	13

(2016-2019)

74	An ultrafast self-healing polydimethylsiloxane elastomer with persistent sealing performance. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1411-1421	7.8	21
73	Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. <i>Nature Communications</i> , 2019 , 10, 1164	17.4	155
72	A Tough Metal-Coordinated Elastomer: A Fatigue-Resistant, Notch-Insensitive Material with an Excellent Self-Healing Capacity. <i>ChemPlusChem</i> , 2019 , 84, 432-440	2.8	11
71	Pinene-Functionalized Polysiloxane as an Excellent Self-Healing Superhydrophobic Polymer. <i>Macromolecular Chemistry and Physics</i> , 2019 , 220, 1900361	2.6	7
7º	Disassociation and Reformation Under Strain in Polymer with Dynamic Metalligand Coordination Cross-Linking. <i>Macromolecules</i> , 2019 , 52, 660-668	5.5	29
69	Distinct Mechanical and Self-Healing Properties in Two Polydimethylsiloxane Coordination Polymers with Fine-Tuned Bond Strength. <i>Inorganic Chemistry</i> , 2018 , 57, 3232-3242	5.1	37
68	A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. <i>Nature Communications</i> , 2018 , 9, 2725	17.4	168
67	Self-healing improves the stability and safety of polymer bonded explosives. <i>Composites Science and Technology</i> , 2018 , 167, 346-354	8.6	23
66	Increasing the breakdown strength of dielectric actuators by using Cu/CuxO/silicone dielectric elastomers. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12175-12179	7.1	13
65	Phthalorubines: Fused-Ring Compounds Synthesized from Phthalonitrile. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15384-15389	16.4	6
64	Phthalorubines: Fused-Ring Compounds Synthesized from Phthalonitrile. <i>Angewandte Chemie</i> , 2018 , 130, 15610-15615	3.6	2
63	An Elastic Autonomous Self-Healing Capacitive Sensor Based on a Dynamic Dual Crosslinked Chemical System. <i>Advanced Materials</i> , 2018 , 30, e1801435	24	185
62	Three Properties in One Coordination Complex: Chirality, Spin Crossover, and Dielectric Switching. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 3144-3149	2.3	20
61	A Highly Stretchable and Autonomous Self-Healing Polymer Based on Combination of PtIIIPt and Interactions. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 1667-1675	4.8	142
60	A Stiff and Healable Polymer Based on Dynamic-Covalent Boroxine Bonds. <i>Advanced Materials</i> , 2016 , 28, 8277-8282	24	251
59	Enhancing magnetoresistance in tetrathiafulvalene carboxylate modified iron oxide nanoparticle assemblies. <i>Nanoscale</i> , 2016 , 8, 12128-33	7.7	9
58	Novel redox responsive chiral cyclometalated platinum(II) complexes with pinene functionalized C^N^N ligands. <i>New Journal of Chemistry</i> , 2016 , 40, 2628-2636	3.6	9
57	A Highly Stretchable Polymer that Can Be Thermally Healed at Mild Temperature. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 952-6	4.8	53

56	Facile and environmentally friendly synthesis of ultrathin nickel hydroxide nanosheets with excellent supercapacitor performances. <i>Nanoscale</i> , 2016 , 8, 11797-802	7.7	39
55	A highly stretchable autonomous self-healing elastomer. <i>Nature Chemistry</i> , 2016 , 8, 618-24	17.6	858
54	Insight into selective removal of copper from high-concentration nickel solutions with XPS and DFT: New technique to prepare 5N-nickel with chelating resin. <i>Journal of Environmental Sciences</i> , 2016 , 48, 34-44	6.4	19
53	Mechano-induced luminescent and chiroptical switching in chiral cyclometalated platinum(II) complexes. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2350-2357	7.1	70
52	Electrochromic properties of novel octa-pinene substituted double-decker Ln(III) (Ln = Eu, Er, Lu) phthalocyanines with distinctive near-IR absorption. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3072-308	07.1	22
51	A self-healing PDMS polymer with solvatochromic properties. <i>Chemical Communications</i> , 2015 , 51, 8928	S-3.Ø	68
50	A novel tetraethylenepentamine functionalized polymeric adsorbent for enhanced removal and selective recovery of heavy metal ions from saline solutions. <i>RSC Advances</i> , 2015 , 5, 75985-75997	3.7	15
49	Potential switchable circularly polarized luminescence from chiral cyclometalated platinum(II) complexes. <i>Inorganic Chemistry</i> , 2015 , 54, 143-52	5.1	79
48	Asymmetric DonorEAcceptor-Type Benzo-Fused Aza-BODIPYs: Facile Synthesis and Colorimetric Properties. <i>Angewandte Chemie</i> , 2015 , 127, 9198-9202	3.6	11
47	Asymmetric Donor-FAcceptor-Type Benzo-Fused Aza-BODIPYs: Facile Synthesis and Colorimetric Properties. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9070-4	16.4	30
46	Facile synthesis of phthalocyanine at low temperature with diisopropylamide anion as nucleophile. <i>Tetrahedron Letters</i> , 2015 , 56, 4459-4462	2	8
45	Tuning Electron-Conduction and Spin Transport in Magnetic Iron Oxide Nanoparticle Assemblies via Tetrathiafulvalene-Fused Ligands. <i>ACS Nano</i> , 2015 , 9, 12205-13	16.7	19
44	Dramatic improvement in photostability of luminescent Eu(III) complexes with tetraphenylimidodiphosphinate ligand. <i>Journal of Luminescence</i> , 2014 , 146, 544-549	3.8	9
43	A new multicolored and near-infrared electrochromic material based on triphenylamine-containing poly(3,4-dithienylpyrrole). <i>Organic Electronics</i> , 2014 , 15, 3735-3745	3.5	26
42	Vapor-induced chiroptical switching in chiral cyclometalated platinum(II) complexes with pinene functionalized C^N^N ligands. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 184-194	7.1	31
41	Synthesis and characterization of a new series of nickel dithiolate compounds containing both acridinium cations and halogen anions. <i>Inorganica Chimica Acta</i> , 2014 , 410, 88-93	2.7	1
40	High efficient removal of Cu(II) by a chelating resin from strong acidic solutions: Complex formation and DFT certification. <i>Chemical Engineering Journal</i> , 2013 , 222, 240-247	14.7	54
39	Circular dichroism spectroscopy study of crystalline-to-amorphous transformation in chiral platinum(II) complexes. <i>Chirality</i> , 2013 , 25, 384-92	2.1	8

(2010-2013)

Synthesis and ferroelectric properties of platinum(II) complexes with chiral isoxazoline ligand. <i>Polyhedron</i> , 2013 , 60, 85-92	2.7	5
Triazine dyes as photosensitizers for dye-sensitized solar cells. <i>Tetrahedron</i> , 2013 , 69, 190-200	2.4	30
Iron(II) Complexes Based on EConjugated Terpyridine Ligands with Tetrathiafulvalene or Its Radical Analogue. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 6037-6048	2.3	21
VCD spectroscopy probing of weak intermolecular interactions between copper coordination compounds and N-blocked amino acids. <i>Vibrational Spectroscopy</i> , 2012 , 63, 451-459	2.1	4
Efficient blue emitters based on 1,3,5-triazine for nondoped organic light emitting diode applications. <i>Organic Electronics</i> , 2012 , 13, 2177-2184	3.5	10
Solvent-induced single-crystal-to-single-crystal transformation in multifunctional chiral dysprosium(III) compounds. <i>Inorganic Chemistry</i> , 2012 , 51, 8649-51	5.1	65
Improving spectral response of monocrystalline silicon photovoltaic modules using high efficient luminescent down-shifting Eu3+ complexes. <i>Progress in Photovoltaics: Research and Applications</i> , 2012 , 21, n/a-n/a	6.8	15
Vibrational and electronic circular dichroism monitoring of copper(II) coordination with a chiral ligand. <i>Chirality</i> , 2012 , 24, 451-8	2.1	24
Facile preparation of silicon hollow spheres and their use in electrochemical capacitive energy storage. <i>Chemical Communications</i> , 2012 , 48, 4950-2	5.8	63
Synthesis and photovoltaic performances of donor deceptor dyes utilizing 1,3,5-triazine as spacers. <i>Tetrahedron Letters</i> , 2011 , 52, 6492-6496	2	40
Low-temperature synthesis of Na2Mn5O10 for supercapacitor applications. <i>Journal of Power Sources</i> , 2011 , 196, 10502-10506	8.9	23
Synthesis, structure and magnetic properties of a two-dimensional manganese(II) complex with a maximum denticity of ethylenediaminetetraacetic ligand. <i>Inorganica Chimica Acta</i> , 2011 , 376, 112-117	2.7	8
Interaction mechanism of aqueous heavy metals onto a newly synthesized IDA-chelating resin: Isotherms, thermodynamics and kinetics. <i>Chemical Engineering Journal</i> , 2011 , 173, 106-114	14.7	58
Synthesis and properties of a Cu4(SCN)4 cubane cluster-based coordination polymer with a diamond net. <i>Inorganic Chemistry Communication</i> , 2011 , 14, 558-561	3.1	6
Distinct magnetic dynamic behavior for two polymorphs of the same Dy(III) complex. <i>Chemical Communications</i> , 2011 , 47, 6867-9	5.8	88
Coordination polymers based on the octamolybdate and flexible bis(triazole) ligands with different spacer lengths. <i>CrystEngComm</i> , 2011 , 13, 2350	3.3	51
Large low-field magnetoresistance in Fe3O4/molecule nanoparticles at room temperature. <i>Journal Physics D: Applied Physics</i> , 2011 , 44, 025001	3	16
Synthesis, structure and chiroptical study of chiral macrocyclic imine nickel(II) coordination compounds derived from camphor. <i>Dalton Transactions</i> , 2010 , 39, 3227-32	4.3	28
	Triazine dyes as photosensitizers for dye-sensitized solar cells. <i>Tetrahedron</i> , 2013, 69, 190-200 Iron(II) Complexes Based on Econjugated Terpyridine Ligands with Tetrathiafulvalene or its Radical Analogue. <i>European Journal of Inorganic Chemistry</i> , 2013, 2013, 6037-6048 VCO spectroscopy probing of weak intermolecular interactions between copper coordination compounds and N-blocked amino acids. <i>Vibrational Spectroscopy</i> , 2012, 63, 451-459 Efficient blue emitters based on 1,3,5-triazine for nondoped organic light emitting diode applications. <i>Organic Electronics</i> , 2012, 13, 2177-2184 Solvent-induced single-crystal-to-single-crystal transformation in multifunctional chiral dysprosium(III) compounds. <i>Inorganic Chemistry</i> , 2012, 51, 8649-51 Improving spectral response of monocrystalline silicon photovoltaic modules using high efficient luminescent down-shifting Eu3+ complexes. <i>Progress in Photovoltaics: Research and Applications</i> , 2012, 21, n/a-n/a Vibrational and electronic circular dichroism monitoring of copper(II) coordination with a chiral ligand. <i>Chirality</i> , 2012, 24, 451-8 Facile preparation of silicon hollow spheres and their use in electrochemical capacitive energy storage. <i>Chemical Communications</i> , 2012, 48, 4950-2 Synthesis and photovoltaic performances of donoriacceptor dyes utilizing 1,3,5-triazine as II spacers. <i>Tetrahedron Letters</i> , 2011, 52, 6492-6496 Low-temperature synthesis of Na2Mn5O10 for supercapacitor applications. <i>Journal of Power Sources</i> , 2011, 196, 10502-10506 Synthesis, structure and magnetic properties of a two-dimensional manganese(II) complex with a maximum denticity of ethylenediaminetetracetic ligand. <i>Inorganica Chimica Acta</i> , 2011, 376, 112-117 Interaction mechanism of aqueous heavy metals onto a newly synthesized IDA-chelating resin: Isotherms, thermodynamics and kinetics. <i>Chemical Engineering Journal</i> , 2011, 173, 106-114 Synthesis and properties of a Cu4(SCN)4 cubane cluster-based coordination polymer with a diamond net. <i>Inorganic Chemistry Communication</i> ,	Triazine dyes as photosensitizers for dye-sensitized solar cells. Tetrahedron, 2013, 69, 190-200 24 Iron(II) Complexes Based on Econjugated Terpyridine Ligands with Tetrathiafulvalene or Its Radical Analogue. European Journal of Inorganic Chemistry, 2013, 2013, 6037-6048 23 VCD spectroscopy probing of weak intermolecular interactions between copper coordination compounds and N-blocked amino acids. Vibrational Spectroscopy, 2012, 63, 451-459 Efficient blue emitters based on 1,3,5-triazine for nondoped organic light emitting diode applications. Organic Electronics, 2012, 13, 2177-2184 Solvent-induced single-crystal-to-single-crystal transformation in multifunctional chiral dysprosium(III) compounds. Inorganic Chemistry, 2012, 51, 8649-51 Improving spectral response of monocrystalline silicon photovoltaic modules using high efficient luminescent down-shifting Eu3+ complexes. Progress in Photovoltaics: Research and Applications, 2012, 21, n/3-n/a Vibrational and electronic circular dichroism monitoring of copper(II) coordination with a chiral ligand. Chirality, 2012, 24, 451-8 Facile preparation of silicon hollow spheres and their use in electrochemical capacitive energy storage. Chemical Communications, 2012, 48, 4950-2 Synthesis and photovoltaic performances of donorBeceptor dyes utilizing 1,3,5-triazine as II 2 spacers. Tetrahedron Letters, 2011, 52, 6492-6496 Low-temperature synthesis of Na2Mn5010 for supercapacitor applications. Journal of Power Sources, 2011, 196, 10502-10506 Synthesis, structure and magnetic properties of a two-dimensional manganese(II) complex with a maximum denticity of ethylenediaminetetraacetic ligand. Inorganica Chimica Acta, 2011, 376, 112-117 Interaction mechanism of aqueous heavy metals onto a newly synthesized IDA-chelating resin: Isotherms, thermodynamics and kinetics. Chemical Engineering Journal, 2011, 173, 106-114 Synthesis and properties of a Cu4(SCN)4 cubane cluster-based coordination polymer with a diamond net. Inorganic Chemistry Communication, 2011, 14, 558-5

20	Syntheses, Structures, and Physical Properties of Camphorate Coordination Polymers Controlled by Semirigid Auxiliary Ligands with Variable Coordination Positions and Conformations. <i>Crystal Growth and Design</i> , 2010 , 10, 2596-2605	3.5	57
19	Novel Structural Diversity of Triazolate-Based Coordination Polymers Generated Solvothermally with Anions. <i>Crystal Growth and Design</i> , 2010 , 10, 2136-2145	3.5	38
18	Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy). <i>Chemical Communications</i> , 2010 , 46, 2929-31	5.8	220
17	Ionic ferroelectrics based on nickel schiff base complexes. <i>Inorganic Chemistry</i> , 2010 , 49, 1286-8	5.1	50
16	Homoleptic copper(I) phenylselenolate polymer as a single-source precursor for Cu2Se nanocrystals. Structure, photoluminescence and application in field-effect transistor. <i>Chemical Science</i> , 2010 , 1, 515	9.4	33
15	Syntheses, structures, and properties of tricarbonyl rhenium(I) heteronuclear complexes with the multidentate bridging ligand containing bis(2-pyridine) and carboxylic acid. <i>Inorganica Chimica Acta</i> , 2010 , 363, 3742-3749	2.7	4
14	Synthesis and Physical Properties of Two Chiral Terpyridyl Europium(III) Complexes with Distinct Crystal Polarity. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 4844-4849	2.3	38
13	Synthesis, structure and physical properties of the one-dimensional chain complex of tetrathiafulvalene carboxylate. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 1596-1601		13
12	Synthesis and characterization of neutral iron(II) and ruthenium(II) complexes with the isocyanotriphenylborate ligand. <i>Dalton Transactions</i> , 2009 , 10256-62	4.3	8
11	A noncentrosymmetric 3D coordination polymer of metallocalix[4]arene. <i>Inorganic Chemistry</i> , 2008 , 47, 11514-8	5.1	25
10	Homoleptic copper(I) arylthiolates as a new class of p-type charge carriers: structures and charge mobility studies. <i>Chemistry - A European Journal</i> , 2008 , 14, 2965-75	4.8	32
9	Luminescent Gold(I) and Copper(I) Phosphane Complexes Containing the 4-Nitrophenylthiolate Ligand: Observation of EnCharge-Transfer Emission. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 2421-2428	2.3	16
8	Synthesis and magnetic properties of a highly conducting neutral nickel complex with a highly conjugated tetrathiafulvalenedithiolate ligand. <i>Inorganic Chemistry</i> , 2007 , 46, 6837-9	5.1	36
7	Long-range superexchanged magnetic interaction observed in heterometallic complex: {[FeII(Tpms)(CN)3][MnII(H2O)2(DMF)2]}IDMF. <i>Inorganica Chimica Acta</i> , 2005 , 358, 4057-4061	2.7	9
6	Tris[bis[hydrotris(1-pyrazolyl)borato-kappa3N2,N2\$N2"]iron(III)] hexaisothiocyanatoiron(III). <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 2004 , 60, m258-60		1
5	A Strong and Rigid Coordination Adaptable Network that can be Reprocessed and Recycled at Mild Conditions. <i>CCS Chemistry</i> ,1-38	7.2	O
4	A Strong and Rigid Coordination Adaptable Network that Can Be Reprocessed and Recycled at Mild Conditions. <i>CCS Chemistry</i> ,1-17	7.2	
3	A Fast Self-Healing Magnetic Nanocomposite for Magnetic Actuators. <i>Macromolecular Materials and Engineering</i> ,2100649	3.9	2

LIST OF PUBLICATIONS

2	A Puncture-Resistant and Self-Healing Conductive Gel for Multifunctional Electronic Skin. <i>Advanced Functional Materials</i> ,2107006	15.6	9	
1	An Underwater Long-Term Strong Adhesive Based on Boronic Esters with Enhanced Hydrolytic Stability. <i>Advanced Functional Materials</i> ,2201959	15.6	2	