Wei Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1908108/publications.pdf

Version: 2024-02-01

172457 155660 3,140 55 62 29 citations h-index g-index papers 63 63 63 4547 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Supramolecular Copolymers of Peptides and Lipidated Peptides and Their Therapeutic Potential. Journal of the American Chemical Society, 2022, 144, 5562-5574.	13.7	16
2	Coâ€Assembly Induced Solidâ€State Stacking Transformation in Amino Acidâ€Based Crystals with Enhanced Physical Properties. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
3	Effect of the implantâ€supported provisional restoration on the accuracy of digital periâ€implant mucosa replication–A clinical study. Clinical Oral Implants Research, 2022, 33, 598-606.	4.5	3
4	Coâ€Assembly Induced Solidâ€State Stacking Transformation in Amino Acidâ€Based Crystals with Enhanced Physical Properties. Angewandte Chemie, 2022, 134, .	2.0	3
5	Molecular characteristics, polymorphism and expression analysis of mhc â; in yellow catfish(pelteobagrus fulvidraco)responding to Flavobacterium columnare infection. Fish and Shellfish Immunology, 2022, 125, 90-100.	3.6	4
6	Modulation of physical properties of organic cocrystals by amino acid chirality. Materials Today, 2021, 42, 29-40.	14.2	25
7	Molecular characterization and expression analysis of Tf_TLR4 and Tf_TRIL in yellow catfish Tachysurus fulvidraco responding to Edwardsiella ictaluri challenge. International Journal of Biological Macromolecules, 2021, 167, 746-755.	7.5	8
8	3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure. Small, 2021, 17, e2005743.	10.0	54
9	The risk factors of early implant failure: A retrospective study of 6113 implants. Clinical Implant Dentistry and Related Research, 2021, 23, 280-288.	3.7	16
10	Solid-state packing dictates the unexpected solubility of aromatic peptides. Cell Reports Physical Science, 2021, 2, 100391.	5. 6	10
11	Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies. Nature Communications, 2021, 12, 2634.	12.8	68
12	Expanding the Structural Diversity and Functional Scope of Diphenylalanine-Based Peptide Architectures by Hierarchical Coassembly. Journal of the American Chemical Society, 2021, 143, 17633-17645.	13.7	47
13	Single-cell characterization of monolayer cultured human dental pulp stem cells with enhanced differentiation capacity. International Journal of Oral Science, 2021, 13, 44.	8.6	14
14	Tunable Mechanical and Optoelectronic Properties of Organic Cocrystals by Unexpected Stacking Transformation from H- to J- and X-Aggregation. ACS Nano, 2020, 14, 10704-10715.	14.6	61
15	Coassembly-Induced Transformation of Dipeptide Amyloid-Like Structures into Stimuli-Responsive Supramolecular Materials. ACS Nano, 2020, 14, 7181-7190.	14.6	62
16	ZNF281-miR-543 Feedback Loop Regulates Transforming Growth Factor-Î ² -Induced Breast Cancer Metastasis. Molecular Therapy - Nucleic Acids, 2020, 21, 98-107.	5.1	18
17	Formation of Semiconducting Supramolecular Fullerene Aggregates in a Dipeptide Organogel. Advanced Materials Technologies, 2020, 5, 1900829.	5.8	3
18	Unusual Twoâ€Step Assembly of a Minimalistic Dipeptideâ€Based Functional Hypergelator. Advanced Materials, 2020, 32, e1906043.	21.0	73

#	Article	lF	Citations
19	Self-Assembly of Aromatic Amino Acid Enantiomers into Supramolecular Materials of High Rigidity. ACS Nano, 2020, 14, 1694-1706.	14.6	86
20	Deciphering the structure-property relationship in coumarin-based supramolecular organogel materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124744.	4.7	9
21	Self-Assembly of Cyclic Dipeptides: Platforms for Functional Materials. Protein and Peptide Letters, 2020, 27, 688-697.	0.9	15
22	Composite of Peptideâ€Supramolecular Polymer and Covalent Polymer Comprises a New Multifunctional, Bioâ€Inspired Soft Material. Macromolecular Rapid Communications, 2019, 40, e1900175.	3.9	37
23	Hierarchically oriented organization inÂsupramolecular peptide crystals. Nature Reviews Chemistry, 2019, 3, 567-588.	30.2	326
24	Stoichiometry-controlled secondary structure transition of amyloid-derived supramolecular dipeptide co-assemblies. Communications Chemistry, 2019, 2, .	4.5	40
25	Metal-Ion Modulated Structural Transformation of Amyloid-Like Dipeptide Supramolecular Self-Assembly. ACS Nano, 2019, 13, 7300-7309.	14.6	121
26	Chiral Recognition of Lipid Bilayer Membranes by Supramolecular Assemblies of Peptide Amphiphiles. ACS Biomaterials Science and Engineering, 2019, 5, 2786-2792.	5.2	26
27	Inversion of Circularly Polarized Luminescence of Nanofibrous Hydrogels through Co-assembly with Achiral Coumarin Derivatives. ACS Nano, 2019, 13, 7281-7290.	14.6	126
28	Rigid Tightly Packed Amino Acid Crystals as Functional Supramolecular Materials. ACS Nano, 2019, 13, 14477-14485.	14.6	48
29	Regulating Higherâ€Order Organization through the Synergy of Two Selfâ€6orted Assemblies. Angewandte Chemie - International Edition, 2018, 57, 3636-3640.	13.8	25
30	Photoresponsive Coumarinâ€Based Supramolecular Hydrogel for Controllable Dye Release. Macromolecular Chemistry and Physics, 2018, 219, 1700398.	2.2	18
31	Bioactive Nanofibers Induce Neural Transdifferentiation of Human Bone Marrow Mesenchymal Stem Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 41046-41055.	8.0	42
32	Deciphering the combined effect of bone morphogenetic protein 6 and calcium phosphate on bone formation capacity of periosteum derived cell-based tissue engineering constructs. Acta Biomaterialia, 2018, 80, 97-107.	8.3	25
33	Healing of a Large Long-Bone Defect through Serum-Free InÂVitro Priming ofÂHuman Periosteum-Derived Cells. Stem Cell Reports, 2017, 8, 758-772.	4.8	44
34	Coassembly Modulated pHâ€Responsive Hydrogel for Dye Absorption and Release. Macromolecular Chemistry and Physics, 2017, 218, 1600560.	2.2	15
35	Tyr23 phosphorylation of Anxa2 enhances STAT3 activation and promotes proliferation and invasion of breast cancer cells. Breast Cancer Research and Treatment, 2017, 164, 327-340.	2.5	36
36	Electrospun Nanofibrous Silk Fibroin Membranes Containing Gelatin Nanospheres for Controlled Delivery of Biomolecules. Advanced Healthcare Materials, 2017, 6, 1700014.	7.6	55

#	Article	IF	Citations
37	Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion. Journal of the American Chemical Society, 2017, 139, 8995-9000.	13.7	68
38	Upconverting and persistent luminescent nanocarriers for accurately imaging-guided photothermal therapy. Materials Science and Engineering C, 2017, 79, 191-198.	7.3	16
39	Toward Advanced Therapy Medicinal Products (ATMPs) Combining Bone Morphogenetic Proteins (BMP) and Cells for Bone Regeneration., 2017,, 127-169.		2
40	Non-invasively visualizing cell–matrix interactions in two-photon excited supramolecular hydrogels. Journal of Materials Chemistry B, 2017, 5, 7790-7795.	5.8	10
41	Tuning Syneresis Properties of Kappaâ€Carrageenan Hydrogel by C2â€Symmetric Benzeneâ€Based Supramolecular Gelators. Macromolecular Chemistry and Physics, 2016, 217, 1197-1204.	2.2	14
42	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Coâ€Assembly with Achiral Molecules. Angewandte Chemie - International Edition, 2016, 55, 2411-2415.	13.8	140
43	Innentitelbild: Inversion of the Supramolecular Chirality of Nanofibrous Structures through Coâ€Assembly with Achiral Molecules (Angew. Chem. 7/2016). Angewandte Chemie, 2016, 128, 2318-2318.	2.0	0
44	Galactose-decorated light-responsive hydrogelator precursors for selectively killing cancer cells. Chemical Communications, 2016, 52, 12574-12577.	4.1	28
45	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Coâ€Assembly with Achiral Molecules. Angewandte Chemie, 2016, 128, 2457-2461.	2.0	39
46	Influence of C–H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly. ACS Applied Materials & Diterfaces, 2016, 8, 5188-5195.	8.0	27
47	A Redox-Responsive Supramolecular Hydrogel for Controllable Dye Release. Macromolecular Chemistry and Physics, 2015, 216, 1945-1951.	2.2	15
48	Macromol. Chem. Phys. 19/2015. Macromolecular Chemistry and Physics, 2015, 216, 1984-1984.	2.2	0
49	Anxa2 binds to STAT3 and promotes epithelial to mesenchymal transition in breast cancer cells. Oncotarget, 2015, 6, 30975-30992.	1.8	73
50	A novel Anxa2-interacting protein Ebp1 inhibits cancer proliferation and invasion by suppressing Anxa2 protein level. Molecular and Cellular Endocrinology, 2015, 411, 75-85.	3.2	17
51	Installing Logic Gates to Multiresponsive Supramolecular Hydrogel Co-assembled from Phenylalanine Amphiphile and Bis(pyridinyl) Derivative. Langmuir, 2015, 31, 7122-7128.	3.5	33
52	Adipose tissueâ€derived mesenchymal stem cells as monocultures or cocultures with human umbilical vein endothelial cells: Performance <i>in vitro</i> and in rat cranial defects. Journal of Biomedical Materials Research - Part A, 2014, 102, 1026-1036.	4.0	26
53	The influence of electrospun fibre scaffold orientation and nano-hydroxyapatite content on the development of tooth bud stem cells in vitro. Odontology / the Society of the Nippon Dental University, 2014, 102, 14-21.	1.9	26
54	P-glycoprotein associates with Anxa2 and promotes invasion in multidrug resistant breast cancer cells. Biochemical Pharmacology, 2014, 87, 292-302.	4.4	58

#	Article	lF	CITATIONS
55	Incorporation of stromal cell-derived factor- \hat{l} in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials, 2013, 34, 735-745.	11.4	155
56	Coaxially Electrospun Scaffolds Based on Hydroxyl-Functionalized Poly(ε-caprolactone) and Loaded with VEGF for Tissue Engineering Applications. Biomacromolecules, 2012, 13, 3650-3660.	5.4	49
57	Local delivery of small and large biomolecules in craniomaxillofacial bone. Advanced Drug Delivery Reviews, 2012, 64, 1152-1164.	13.7	48
58	Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation. Biomaterials, 2012, 33, 6604-6614.	11.4	151
59	Bioactive Electrospun Scaffolds Delivering Growth Factors and Genes for Tissue Engineering Applications. Pharmaceutical Research, 2011, 28, 1259-1272.	3.5	360
60	An Electrospun Degradable Scaffold Based on a Novel Hydrophilic Polyester for Tissueâ€Engineering Applications. Macromolecular Bioscience, 2011, 11, 1684-1692.	4.1	15
61	Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning. Acta Biomaterialia, 2010, 6, 4199-4207.	8.3	158
62	Strength of tunnel-restored teeth with different materials and marginal ridge height. Dental Materials, 2009, 25, 1363-1370.	3.5	9