Kevin M Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1908022/publications.pdf

Version: 2024-02-01

85 papers

3,515 citations

30 h-index 55 g-index

95 all docs 95 docs citations 95 times ranked 3428 citing authors

#	Article	IF	Citations
1	Assessing the Adaptability of Quinoa and Millet in Two Agroecological Zones of Rwanda. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	1
2	From Ground to Glass: Evaluation of Unique Barley Varieties for Craft Malting, Craft Brewing, and Consumer Sensory. Beverages, 2022, 8, 30.	2.8	5
3	The diversity of quinoa morphological traits and seed metabolic composition. Scientific Data, 2022, 9, .	5. 3	10
4	A Plant-Fungus Bioassay Supports the Classification of Quinoa (Chenopodium quinoa Willd.) as Inconsistently Mycorrhizal. Microbial Ecology, 2021, 82, 135-144.	2.8	10
5	Seed Dormancy and Preharvest Sprouting in Quinoa (Chenopodium quinoa Willd). Plants, 2021, 10, 458.	3.5	16
6	Quinoa in Ecuador: Recent Advances under Global Expansion. Plants, 2021, 10, 298.	3.5	15
7	Effects of Agronomic Practices on <i>Lygus</i> spp. (Hemiptera: Miridae) Population Dynamics in Quinoa. Environmental Entomology, 2021, 50, 852-859.	1.4	2
8	Quinoa's Potential to Enhance Dietary Management of Obesity and Type-2 Diabetes: A Review of the Current Evidence. International Journal of Diabetology, 2021, 2, 77-94.	2.0	5
9	Effect of Nitrogen and Seeding Rate on \hat{l}^2 -Glucan, Protein, and Grain Yield of Naked Food Barley in No-Till Cropping Systems in the Palouse Region of the Pacific Northwest. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	5
10	Strategic malting barley improvement for craft brewers through consumer sensory evaluation of malt and beer. Journal of Food Science, 2021, 86, 3628-3644.	3.1	12
11	Quinoa Phenotyping Methodologies: An International Consensus. Plants, 2021, 10, 1759.	3.5	24
12	Registration of â€~Resilience CL+' soft white winter wheat. Journal of Plant Registrations, 2021, 15, 196-205.	0.5	0
13	Agronomic and economic performance of organic forage, quinoa, and grain crop rotations in the Palouse region of the Pacific Northwest, USA. Agricultural Systems, 2020, 177, 102709.	6.1	16
14	Utilization of Evolutionary Plant Breeding Increases Stability and Adaptation of Winter Wheat Across Diverse Precipitation Zones. Sustainability, 2020, 12, 9728.	3.2	15
15	Seed Composition and Amino Acid Profiles for Quinoa Grown in Washington State. Frontiers in Nutrition, 2020, 7, 126.	3.7	33
16	Productivity and soil quality of organic forage, quinoa, and grain cropping systems in the dryland Pacific Northwest, USA. Agriculture, Ecosystems and Environment, 2020, 293, 106838.	5.3	14
17	Genotype × environment interaction and stability of βâ€glucan content in barley in the Palouse region of eastern Washington. Crop Science, 2020, 60, 2500-2510.	1.8	14
18	Leaf Gas Exchange Performance of Ten Quinoa Genotypes under a Simulated Heat Wave. Plants, 2020, 9, 81.	3. 5	17

#	Article	lF	CITATIONS
19	Highâ€Throughput Field Phenotyping to Assess Irrigation Treatment Effects in Quinoa. , 2019, 2, 1-7.		16
20	Assessing the Potential Adoption of Quinoa for Human Consumption in Central Malawi. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	5
21	Spectral Reflectance Indices and Physiological Parameters in Quinoa under Contrasting Irrigation Regimes. Crop Science, 2019, 59, 1927-1944.	1.8	33
22	Effects of imidacloprid seed treatments on crop yields and economic returns of cereal crops. Crop Protection, 2019, 119, 166-171.	2.1	16
23	Hulled varieties of Barley showed better expansion characteristics compared to hullâ€less varieties during twinâ€screw extrusion. Cereal Chemistry, 2019, 96, 391-404.	2.2	9
24	Impact of heat and drought stress on peroxisome proliferation in quinoa. Plant Journal, 2019, 99, 1144-1158.	5.7	33
25	Quinoa intake reduces plasma and liver cholesterol, lessens obesity-associated inflammation, and helps to prevent hepatic steatosis in obese db/db mouse. Food Chemistry, 2019, 287, 107-114.	8.2	68
26	Agronomic Performance of Perennial Grain Genotypes in the Palouse Region of the Pacific Northwest, USA. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	3
27	Evaluation of \hat{l}^2 -glucan content, viscosity, soluble dietary fiber and processing effect in grains of Ecuadorian barley genotypes. Agronomia Colombiana, 2019, 37, 323-330.	0.5	2
28	Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (<i>Chenopodium quinoa</i> Willd.). Journal of Agronomy and Crop Science, 2019, 205, 33-45.	3.5	78
29	Evolutionary participatory quinoa breeding for organic agro-ecosystems in the US Pacific Northwest. , 2019, , 135-158.		4
30	Effect of barley supplementation on the fecal microbiota, caecal biochemistry, and key biomarkers of obesity and inflammation in obese db/db mice. European Journal of Nutrition, 2018, 57, 2513-2528.	3.9	28
31	Three hulless oat varieties show economic potential as organic layer feed grain. Renewable Agriculture and Food Systems, 2018, 33, 418-431.	1.8	6
32	Quinoa Abiotic Stress Responses: A Review. Plants, 2018, 7, 106.	3.5	166
33	The genome of Chenopodium quinoa. Nature, 2017, 542, 307-312.	27.8	569
34	Physicochemical Characterization of Different Varieties of Quinoa. Cereal Chemistry, 2017, 94, 847-856.	2.2	44
35	Lexicon Development, Consumer Acceptance, and Drivers of Liking of Quinoa Varieties. Journal of Food Science, 2017, 82, 993-1005.	3.1	48
36	Quinoa Starch Characteristics and Their Correlations with the Texture Profile Analysis (TPA) of Cooked Quinoa. Journal of Food Science, 2017, 82, 2387-2395.	3.1	45

3

#	Article	lF	Citations
37	Perennial wheat lines have highly admixed population structure and elevated rates of outcrossing. Euphytica, 2017, 213, 1.	1.2	4
38	A quiet harvest: linkage between ritual, seed selection and the historical use of the finger-bladed knife as a traditional plant breeding tool in Ifugao, Philippines. Journal of Ethnobiology and Ethnomedicine, 2017, 13, 3.	2.6	6
39	Toward a taxonomic definition of perennial wheat: a new species ×Tritipyrum aaseae described. Genetic Resources and Crop Evolution, 2017, 64, 1651-1659.	1.6	7
40	Preliminary Studies of the Performance of Quinoa (Chenopodium quinoa Willd.) Genotypes under Irrigated and Rainfed Conditions of Central Malawi. Frontiers in Plant Science, 2017, 08, 227.	3.6	43
41	Phenotypic Responses of Twenty Diverse Proso Millet (Panicum miliaceum L.) Accessions to Irrigation. Sustainability, 2017, 9, 389.	3.2	14
42	Replacing Corn and Wheat in Layer Diets with Hulless Oats Shows Effects on Sensory Properties and Yolk Quality of Eggs. Frontiers in Nutrition, 2017, 4, 37.	3.7	4
43	Development of a Worldwide Consortium on Evolutionary Participatory Breeding in Quinoa. Frontiers in Plant Science, 2016, 7, 608.	3.6	75
44	Quinoa Seed Quality Response to Sodium Chloride and Sodium Sulfate Salinity. Frontiers in Plant Science, 2016, 7, 790.	3.6	29
45	Evaluating Barley for the Emerging Craft Malting Industry in Western Washington. Agronomy Journal, 2016, 108, 939-949.	1.8	13
46	Tradeâ€offs between seed output and life span – a quantitative comparison of traits between annual and perennial congeneric species. New Phytologist, 2016, 209, 104-114.	7.3	87
47	Impacts of Scarification and Degermination on the Expansion Characteristics of Select Quinoa Varieties during Extrusion Processing. Journal of Food Science, 2016, 81, E2939-E2949.	3.1	35
48	Plant breeding for local food systems: A contextual review of end-use selection for small grains and dry beans in Western Washington. Renewable Agriculture and Food Systems, 2016, 31, 172-184.	1.8	20
49	Extrusion processing characteristics of quinoa (Chenopodium quinoa Willd.) var. Cherry Vanilla. Journal of Cereal Science, 2016, 70, 91-98.	3.7	74
50	The history of oats in western Washington and the evolution of regionality in agriculture. Journal of Rural Studies, 2016, 47, 231-241.	4.7	1
51	Effect of irrigation, intercrop, and cultivar on agronomic and nutritional characteristics of quinoa. Agroecology and Sustainable Food Systems, 2016, 40, 783-803.	1.9	37
52	Proso Millet (Panicum miliaceum L.) and Its Potential for Cultivation in the Pacific Northwest, U.S.: A Review. Frontiers in Plant Science, 2016, 7, 1961.	3.6	130
53	Developing Winter Food Barley for the Pacific Northwest of the US. Crop Science, 2015, 55, 1563-1573.	1.8	12
54	Registration of #STRKR Barley Germplasm. Journal of Plant Registrations, 2015, 9, 388-392.	0.5	4

#	Article	IF	CITATIONS
55	A Crossing Method for Quinoa. Sustainability, 2015, 7, 3230-3243.	3.2	36
56	Tolerance of Lowland Quinoa Cultivars to Sodium Chloride and Sodium Sulfate Salinity. Crop Science, 2015, 55, 331-338.	1.8	51
57	Registration of â€~Lyon', a Two-Row, Spring Feed Barley. Journal of Plant Registrations, 2015, 9, 6-9.	0.5	4
58	Registration of â€~Muir' Spring Feed Barley. Journal of Plant Registrations, 2015, 9, 283-287.	0.5	4
59	Evaluation of Texture Differences among Varieties of Cooked Quinoa. Journal of Food Science, 2014, 79, S2337-45.	3.1	46
60	Cardiopulmonary Exercise Testing Demonstrates Maintenance of Exercise Capacity in Patients With Hypoxemia and Pulmonary Arteriovenous Malformations. Chest, 2014, 146, 709-718.	0.8	24
61	Assessment of Genetic Diversity among Barley Cultivars and Breeding Lines Adapted to the US Pacific Northwest, and Its Implications in Breeding Barley for Imidazolinone-Resistance. PLoS ONE, 2014, 9, e100998.	2.5	5
62	Quinoa as source of bioactive compounds with potential for intestinal health (647.18). FASEB Journal, 2014, 28, 647.18.	0.5	3
63	Genotypic Variation in Nutritional Composition of Buckwheat Groats and Husks. Cereal Chemistry, 2013, 90, 132-137.	2.2	34
64	Evolutionary Breeding and Climate Change. , 2013, , 377-389.		9
64 65	Evolutionary Breeding and Climate Change., 2013,, 377-389. Access to Agricultural Inputs, Technology and Information, Communicating with Farmers, and the Role of Women in Agriculture: Perceptions of Iraqi Extension Agents. Journal of International Agricultural and Extension Education, 2013, 20, .	0.2	9
	Access to Agricultural Inputs, Technology and Information, Communicating with Farmers, and the Role of Women in Agriculture: Perceptions of Iraqi Extension Agents. Journal of International	0.2	
65	Access to Agricultural Inputs, Technology and Information, Communicating with Farmers, and the Role of Women in Agriculture: Perceptions of Iraqi Extension Agents. Journal of International Agricultural and Extension Education, 2013, 20, . Agronomic Assessment of Perennial Wheat and Perennial Rye as Cereal Crops. Agronomy Journal, 2012,		5
65 66	Access to Agricultural Inputs, Technology and Information, Communicating with Farmers, and the Role of Women in Agriculture: Perceptions of Iraqi Extension Agents. Journal of International Agricultural and Extension Education, 2013, 20, . Agronomic Assessment of Perennial Wheat and Perennial Rye as Cereal Crops. Agronomy Journal, 2012, 104, 1716-1726. Perennial cereal crops: An initial evaluation of wheat derivatives. Field Crops Research, 2012, 133,	1.8	5 47
65 66 67	Access to Agricultural Inputs, Technology and Information, Communicating with Farmers, and the Role of Women in Agriculture: Perceptions of Iraqi Extension Agents. Journal of International Agricultural and Extension Education, 2013, 20, . Agronomic Assessment of Perennial Wheat and Perennial Rye as Cereal Crops. Agronomy Journal, 2012, 104, 1716-1726. Perennial cereal crops: An initial evaluation of wheat derivatives. Field Crops Research, 2012, 133, 68-89.	1.8 5.1	5 47 65
65 66 67	Access to Agricultural Inputs, Technology and Information, Communicating with Farmers, and the Role of Women in Agriculture: Perceptions of Iraqi Extension Agents. Journal of International Agricultural and Extension Education, 2013, 20, . Agronomic Assessment of Perennial Wheat and Perennial Rye as Cereal Crops. Agronomy Journal, 2012, 104, 1716-1726. Perennial cereal crops: An initial evaluation of wheat derivatives. Field Crops Research, 2012, 133, 68-89. Control of Common Bunt in Organic Wheat. Plant Disease, 2011, 95, 92-103. Genotype × Environment Interactions for Mineral Concentration in Grain of Organically Grown	1.8 5.1 1.4	5 47 65 44
65 66 67 68	Access to Agricultural Inputs, Technology and Information, Communicating with Farmers, and the Role of Women in Agriculture: Perceptions of Iraqi Extension Agents. Journal of International Agricultural and Extension Education, 2013, 20, . Agronomic Assessment of Perennial Wheat and Perennial Rye as Cereal Crops. Agronomy Journal, 2012, 104, 1716-1726. Perennial cereal crops: An initial evaluation of wheat derivatives. Field Crops Research, 2012, 133, 68-89. Control of Common Bunt in Organic Wheat. Plant Disease, 2011, 95, 92-103. Genotype × Environment Interactions for Mineral Concentration in Grain of Organically Grown Spring Wheat. Agronomy Journal, 2011, 103, 1734-1741.	1.8 5.1 1.4	5 47 65 44

#	Article	IF	Citations
73	Registration of â€~Xerpha' Wheat. Journal of Plant Registrations, 2010, 4, 137-140.	0.5	29
74	Participatory Varietal Selection of Wheat for Micro-Niches of Kathmandu Valley. Agroecology and Sustainable Food Systems, 2009, 33, 745-756.	0.9	2
75	Nutritional and quality characteristics expressed in 31 perennial wheat breeding lines. Renewable Agriculture and Food Systems, 2009, 24, 285-292.	1.8	38
76	Post-sexual cycle regrowth and grain yield in <i>Thinopyrum elongatum</i> â€f×â€f <i>Triticum aestivum</i> aestivum	1.9	11
77	Decentralized selection and participatory approaches in plant breeding for low-input systems. Euphytica, 2008, 160, 143-154.	1.2	106
78	Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica, 2008, 163, 381-390.	1.2	193
79	Response to selection, combining ability and heritability of coleoptile length in winter wheat. Euphytica, 2008, 164, 709-718.	1.2	22
80	Relationship among phenotypic growth traits, yield and weed suppression in spring wheat landraces and modern cultivars. Field Crops Research, 2008, 105, 107-115.	5.1	96
81	Karyotype and Ideogram Analyses of Four Wheatgrass Cultivars for Use in Perennial Wheat Breeding. Agroecology and Sustainable Food Systems, 2007, 31, 137-149.	0.9	11
82	Evidence of varietal adaptation to organic farming systems. Field Crops Research, 2007, 102, 172-177.	5.1	274
83	Registration of â€~MDM' Wheat. Journal of Plant Registrations, 2007, 1, 104-106.	0.5	2
84	Breeding for organic and low-input farming systems: An evolutionary–participatory breeding method for inbred cereal grains. Renewable Agriculture and Food Systems, 2005, 20, 48-55.	1.8	123
85	Growing Quinoa in Washington State. Crops & Soils, 0, , .	0.2	O